MathWiki
|
November 21, 2024, at 08:32 AM | MathWiki / MathWiki / Loops |
|
Loops
<b>Proposition.</b> <i>An associative quasigroup is a groupoid.</i>
<b>Definition.</b> Let $L$ be a loop. If for all $x,y,z\in L$, $(x\cdot yx)z=x(y\cdot xz)$, then $L$ is called a <i>Bol-loop</i>.
$$\alpha(x)\circ\beta(y)=\gamma(x\cdot y)\quad \mbox{for all }x,y\in L,$$ then $L$ and $L'$ are said to be <i>isotopic</i>. In this case, the triple $(\alpha,\beta,\gamma)$ is called an isotopic between $L$ and $L'$. We call $(\alpha,\beta,\gamma)$ an isomorphism if $\alpha=\beta=\gamma$, and, in this case, $L$ and $L'$ are said to be ismorphic. <b>Example.</b> Let $G$ be a group and $H$ a subgroup of $G$. Let $T$ be a complete set of left coset representatives (a transversal). Define a multiplication $*$ on $T$ such that $(x*y)H=xyH$. Then $(T,*)$ is a loop.
<b>Example.</b> If $T$ is a transversal of a subgroup $H$ in $G$ and $T$ is a twisted subgroup, then $T$ is a Bol-loop. References [FU00] T. Foguel and A. A. Ungar. <i>Involutory decomposition of groups into twisted subgroups and subgroups.</i> J. Group Theory <b>3</b> (2000), 27--46.<br> [FU01] T. Foguel and A. A. Ungar. <i>Cyrogroups and the decomposition of groups into twisted subgroups and subgroups.</i> Pacific J. Math. <b>197</b> (2001), 1--11. |
Validate the XHTML and CSS of this page. | Page last modified on November 26, 2010, at 12:30 AM | Edit History Print Recent Changes |
Powered by PmWiki |