Loops

  • A <i>magma</i> is a set with a binary operation.
  • An element $e$ in a magma $M$ is an identity element if $em=me=m$ for all $m\in M$. A <i>groupoid</i> is a magma with an identity.
  • A <i>quasigroup</i> is a magma $M$ with the property that for all $a,b\in M$, the equations $ax=b$ and $ya=b$ have unique solutions in $M$.

<b>Proposition.</b> <i>An associative quasigroup is a groupoid.</i>

  • A <i>loop</i> is a quasigroup with an identity element.

<b>Definition.</b> Let $L$ be a loop. If for all $x,y,z\in L$, $(x\cdot yx)z=x(y\cdot xz)$, then $L$ is called a <i>Bol-loop</i>.

  • Consider two magmas $(L,\cdot)$ and $(L',\circ)$. If there are mappings $\alpha$, $\beta$, $\gamma$ from $L$ to $L'$ such that

$$\alpha(x)\circ\beta(y)=\gamma(x\cdot y)\quad \mbox{for all }x,y\in L,$$ then $L$ and $L'$ are said to be <i>isotopic</i>. In this case, the triple $(\alpha,\beta,\gamma)$ is called an isotopic between $L$ and $L'$. We call $(\alpha,\beta,\gamma)$ an isomorphism if $\alpha=\beta=\gamma$, and, in this case, $L$ and $L'$ are said to be ismorphic.

<b>Example.</b> Let $G$ be a group and $H$ a subgroup of $G$. Let $T$ be a complete set of left coset representatives (a transversal). Define a multiplication $*$ on $T$ such that $(x*y)H=xyH$. Then $(T,*)$ is a loop.

  • A subset $T$ of a group $G$ is called a <i>twisted subgroup</i> of $G$ if (1) $1\in T$, (2) $T^{-1}=T$, (3) $xTx\subseteq T$ for all $x\in T$. We may call $T$ a <i>gyrosubgroup</i> of $G$ if (3) is replaced by (3') $xTx^{-1}\subseteq T$ for all $x\in T$ (cf. [FU00] and [FU01]).

<b>Example.</b> If $T$ is a transversal of a subgroup $H$ in $G$ and $T$ is a twisted subgroup, then $T$ is a Bol-loop.

References

[FU00] T. Foguel and A. A. Ungar. <i>Involutory decomposition of groups into twisted subgroups and subgroups.</i> J. Group Theory <b>3</b> (2000), 27--46.<br>

[FU01] T. Foguel and A. A. Ungar. <i>Cyrogroups and the decomposition of groups into twisted subgroups and subgroups.</i> Pacific J. Math. <b>197</b> (2001), 1--11.