Left ideals in 1-primitive near-rings

Gerhard Wendt

Institut für Algebra

Johannes Kepler Universität Linz

Near-rings

Definition 1. A near-ring is a set N together with two binary operations "+" and "." such that

(1) (N, +) is a group (not necessarily abelian)

(2) (N, \cdot) is a semigroup

(3) $\forall n_1, n_2, n_3 \in N$: $(n_1 + n_2) \cdot n_3 = n_1 \cdot n_3 + n_2 \cdot n_3$

A near-ring (N, +, *) is said to be zero symmetric iff $\forall n \in N : n * 0 = 0.$

Definition 2. Let (N, +, *) be a near-ring and $(\Gamma, +)$ be a group. Γ is called an N-group iff there exists a multiplication \odot such that:

(1) $\forall \gamma \in \Gamma \forall n_1, n_2 \in N : (n_1 + n_2) \odot \gamma = n_1 \odot \gamma + n_2 \odot \gamma$

(2)
$$\forall \gamma \in \Gamma \forall n_1, n_2 \in N : (n_1 * n_2) \odot \gamma = n_1 \odot (n_2 \odot \gamma).$$

Preliminaries on N-groups

Let Γ be an *N*-group and let *S* be a normal subgroup of Γ . *S* is called an (*N*-)ideal of Γ if $\forall n \in N \forall \gamma \in \Gamma \forall s \in$ $S : n(\gamma + s) - n\gamma \in S$.

N-ideals of the canonical *N*-group (N, +) are called left ideals of *N*. A left ideal *L* of *N* is an ideal of the nearring *N* if $LN \subseteq L$.

 Γ is called strongly monogenic if $N\Gamma \neq \{0\}$ and for all $\gamma \in \Gamma$ either $N\gamma = \Gamma$ or $N\gamma = \{0\}$.

Let $\theta_1 =: \{ \gamma \in \Gamma \mid N\gamma = \Gamma \}$ and $\theta_0 =: \{ \gamma \in \Gamma \mid N\gamma = \{0\} \}$. Then $\Gamma = \theta_0 \cup \theta_1$.

We define $(0 : \Gamma) := \{n \in N \mid \forall \gamma \in \Gamma : n\gamma = 0\}$. Γ is faithful if $(0 : \Gamma) = \{0\}$.

1-primitive near-rings

An N-group Γ is called simple if there do not exist proper N-ideals in $\Gamma.$

Definition 3. A zero symmetric near-ring N is said to be 1-primitive if there exists an N-group Γ which is simple, faithful and strongly monogenic.

N-groups which are simple and strongly monogenic are called N-groups of type 1.

Definition 4. $J_1(N) := \bigcap_{\Gamma \text{ of type } 1} (0 : \Gamma)$

Note that $J_1(N) = \{0\}$ if N is 1-primitive.

Strongly monogenic *N*-groups

Lemma 5. Let N be a zero symmetric near-ring with a strongly monogenic N-group Γ . Then there exists a greatest proper N-ideal in Γ .

We denote this greatest proper N-ideal by \triangle .

Corollary 6. Let Γ be a strongly monogenic N-group of a zero symmetric near-ring N. Let \triangle be its greatest proper N-ideal. Then Γ/\triangle is an N-group of type 1.

Theorem 7. Let N be a zero symmetric near-ring which has a faithful strongly monogenic N-group Γ . Then $J_1(N)$ is a proper ideal and $N/J_1(N)$ is a 1-primitive near-ring.

Lemma 8. Let $\{0\} \neq L$ be a left ideal of a zero symmetric near-ring N, which is 1-primitive on an N-group Γ . Then Γ is a faithful and strongly monogenic L-group.

Some lemmas and other by-products

Theorem 9. Let I be an ideal of a zero symmetric 1primitive near-ring N. Then I is also a 1-primitive nearring.

Lemma 10. Let N be a zero symmetric near-ring which has a faithful and strongly monogenic N-group Γ . Then, $NJ_1(N) = \{0\}.$

Lemma 11. Let *N* be a zero symmetric near-ring with descending chain condition on *N*-subgroups of *N*. Suppose *N* has a faithful and strongly monogenic *N*-group Γ and suppose *N* has a multiplicative right identity. Then $J_1(N)$ is a proper ideal of *N* and each proper ideal is contained in $J_1(N)$.

6

Left ideals

Lemma 12. Let N be a zero symmetric near-ring with descending chain condition on N-subgroups of N. If there exists an element $e \in N$ with $(0 : e) = \{0\}$, then N has a multiplicative right identity.

Lemma 13. Let $\{0\} \neq L$ be a left ideal of a zero symmetric and 1-primitive near-ring N. Suppose L has the descending chain condition on L-subgroups of L. Then L has a multiplicative right identity.

Theorem 14. Let $\{0\} \neq L$ be a left ideal of a zero symmetric and 1-primitive near-ring. Suppose L has the descending chain condition on L-subgroups of L. Let I be any proper ideal of L. Then $LI = \{0\}$. Furthermore, there exists a greatest proper ideal Q in L, L/Q is a 1-primitive near-ring and $Q = \mathbf{J}_1(L)$.

7

Left ideals

Corollary 15. Let N be a finite zero symmetric and 1primitive near-ring. Let $\{0\} \neq L$ be a left ideal of N. Then, L has a multiplicative right identity and a greatest proper ideal Q. Furthermore, $LQ = \{0\}$.

Example 16. $R = \left\{ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \mid a, b, c, d, e, f, g, h, i \in K \right\}$ (K a finite field). The ring R acts 1-primitively on the R-group $K_n = \left\{ \begin{pmatrix} j \\ k \\ l \end{pmatrix} \mid j, k, l \in K \right\}$. $L = \left\{ \begin{pmatrix} a & 0 & 0 \\ d & 0 & 0 \\ g & 0 & 0 \end{pmatrix} \mid d, g \in K \right\}$ is a left ideal of R. $Q = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ d & 0 & 0 \\ g & 0 & 0 \end{pmatrix} \mid d, g \in K \right\}$ is easily seen to be the greatest ideal of L and $LQ = \{0\}$. $I_1 = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ d & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \mid d \in K \right\}$ and $I_2 = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ g & 0 & 0 \end{pmatrix} \mid g \in K \right\}$ are the other ideals of L which both are contained in Q.

8