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ALGEBRA FOR ANALYSIS

GÜNTER PILZ (LINZ AUSTRIA)
CHI-TOU, TAIWAN, AUGUST 5, 2005

ABSTRACT. Near-ring and near-field theory have (at least) 5 different roots; I will also
mention a few names of the ”early pioneers” in these areas:

(1) Considerations concerning the independence of axioms for a field (Dickson, 100
B.C. (= Before Chi-Tou)).

(2) Connections and applications to Geometry (Veblen-Wedderburn).
(3) Connections and applicatiuns to group theory (Hall, Zassenhaus)
(4) Developments in the line of ring theory (Wielandt, Betsch, Blackett)
(5) Functions on rings (composition rings) (Menger, Adler)

All these streams came together in the past 100 years to form the theories of near-rings and
near-fields. Let us have a look at the root no. 5, since this seems to be the one which is
least known.

TRI-OPERATIONAL ALGEBRAS / COMPOSITIONRINGS

Starting from a ring R, one might form the collection RR of all maps from R into itself;
with pointwise addition and multiplication, as well as composition, one arrives at the com-
position ringM(R) = (RR,+, ·,◦). In general, a structure(C,+, ·,◦) is a tri-operational
algebra(TOA) or acomposition ringif (C,+, ·) is a ring,(C,+,◦) is a near-ring, and if o
distributes over . from the right.

In a series of papers at Notre Dame (Indiana), K. Menger, J.C. Burke, and others studied
axiomatic questions and used already a Ferrero-like method to show that every ring can be
turned into a non-trivial composition ring. K. Menger himself extended the concept of a
TOA by allowing partial functions from a ring R intoitself. Considered als subsets of R
R, the intersection (but not the union) of functions is again a function. If one defined the
quotient f/g of (partial) functions onRas the set

f/g = {(x,y) ∈ R×R | p,q∈ R : (x, p) ∈ f ∧ (x,q) ∈ g∧y = p/q}
then one actually can “divide by zero”! For instance, any function, divided by the zero
function, is again a function, namely the empty function. Observe that for example in
the case that R is the set of reals and f the function mapping every negative number to
its square, thenf + log is the empty function and log− log is not the zero map, but only
contained in the zero map. So more general structures than TOA’s have to be considered if
partial maps are allowed; these “general tri-operational algebras” also have to deal with an
order relation mimicking the inclusion⊆ .

Menger also pointed out that the composition is most important for functions on rings,
since addition and multiplication can in a way be derived from composition. He also
presented a nice method for an easy geometric construction of the graph of fog. Consid-
erably later, I. Adler wrote a fairly systematic study on composition rings. W. Nöbauer,
H. Lausch, E.G. Straus, Y.S. So, J.R. Clay, J. Gutierrez, and others studied ”composition
ring ideals (“full ideals”) extensively for the case of composition rings of polynomials. In-
vertible elements in these composition rings of polynomials (“permutation polynomials”)
were studied by N̈obauer, Lidl, Carlitz, and many others. Still much later, E. Aichinger did
some important work on the structure of composition rings.
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DERIVATIONS IN COMPOSITIONRINGS

Derivations in composition rings and near-rings can be studied in two essentially differ-
ent directions:

(1) As differential near-rings, i.e., as near-rings(N,+, ·) with a homomorphismD on
(N,+), such that the lawD(n·m) = n·D(m)+D(n) ·m is fulfilled. H. Bell, K. Beidar,
Y. Fong, and others obtained a number of interesting results on differential near-rings.
If one considers near-rings more from the view-point(N,+,◦), however, the lawD(n◦
m) = n◦D(m) + D(n) ◦m is not quite what one thinks of when◦ is interpreted as
composition.

(2) Hence - and this only works for composition rings(C,+, ·,◦) - one might study maps
D from C to C which fulfill the laws
D( f +g) = D( f )+D(g) (“sum rule”)
D( f ·g) = f ·D(g)+D( f ) ·g (”product rule”), and
D( f ◦g) = (D( f ) ·g) ·D(g) (“chain rule”)
These mapsD are called derivations onC. Of course, this definition needs the frame-
work of a composition ring and does not make sense in a general near-ring.

Let me concentrate on version (2). Examples of derivations in polynomial composition
rings are all mapsD : p→ αp′, whereα is a constant idempotent. In particular, the zero
map is a derivation. Since for any constant c in a composition ring we haveD(c) = D(c◦
0) = (D(c) ·0) ·D(0) = 0. So a constant always has 0 as its derivative. The example of the
zero derivation shows that the converse is not true.

An interesting open question is the following: With the usual derivations in composition
rings of differentiable functions (in the usual sense), a polynomial function can be char-
acterized as one which has the zero map as one of its higher derivatives. Can this idea be
used to recognize polynomials and polynomial functions in more general settings?

Among many other results, W. N̈obauer and W. M̈uller have shown that for a commu-
tative ringR with identity, the zero derivation is the only one inM(R). So, in particular,
there is no way to extend the usual derivation inM(R) to all real functions so that the sum-
product- and chain rules remain valid. The same is true ifC is a composition field (i.e., if
(C,+, ·) is a field). Also, they showed that inR[x], R[[x]], andR(x), the above examples
p 7→ αp′ with an idempotentα are the only derivations. IfR is an integral domain, then the
product- and the chain rule imply the sum rule.

As soon as one has a derivationD in a composition ringC, one can define many concepts
of analysis. For example, an elemente of C might be called exponential ifD(e) = c ·e for
a constantc. Similarly, “trigonometric elements” etc. can be defined using the well-known
functional or differential equations.

On the other hand, the use of these concepts might bring more light into the many es-
sentially algebraic methods of analysis. Solving linear differential or difference equations
is to a large extent a pure algebraic matter.

K. Menger had the idea also to introduce operators with infinite arity on a composition
ring, like “lim” which takes the limit of sequences (whenever defined). Then the composi-
tion lim◦ f describes the pointwise limit of function sequences, and so on.

W. Müller and A. Oswald also studied “integrations” on composition rings (essentially
as the inverse of derivations).

WHAT ABOUT THE DISCRETECASE?

In the discrete case, we have to replace differential operatorsD by thedifference op-
erator ∆, defined by∆( f )(x) := f (x+1)− f (x), or in a more consistent way by∆( f ) :=
f ◦ (id+1)− f , where 1 is the constant map with value 1 (of course, the composition ring
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must now have a multiplicative identity 1). See, e.g., F. Binder for a near-ring theoretic
account on∆.

The sum rule remains valid, but for the product rule one has to introduce theshift
operatorE with E( f ) := f ◦ (id+1). We then get

( f ·g) = (∆( f ) ·E(g)+ f ·∆(g).

So the discrete case turns into the continuous one “if 1 goes to 0”. On the other hand, one
might say that this last formula shows “with a magnifying glass what is really going on in
continuous analysis”.

The chain rule, however, does not seem to carry over easily to the discrete case, except in
special circumstances. Also, there is no nice formula for the derivative ofxn. R.L. Graham,
D.E. Knuth, and O. Patashnik showed in their fascinating book “Concrete Mathematics”,
however, that everything works out very well ifxn is replaced by the falling powers

xn := x(x−1)(x−2)...(x−n+1).

Then∆(xn) = nxn−1 .
Ordinary and falling powers can be transformed into each other; for example,x2 =

x2 +x1.
Again, integration might be introduced as the “inverse” of the difference operator. This

yields beautiful integration (now: summation) formulas. As an example, the lines above
show that the “discrete derivative” ofxn is (xn+1)/(n+1). This even holds for negativen (in
whichxn is defined as the multiplicative inverse ofx(x+1)...(x+n−1), except forn=−1,
in which case we get the firstn summands of the harmonic series 1/1+1/2+ ...+1/n =:
Hn. Hence

b

∑
a

xm = (xm+1)/(m+1) |ba= (xb+1)/(b+1)− (xa+1)/(a+1)

and
b

∑
a

x−1 = Hb−Ha,

where∑b
a means the sum fromx = a to x = b−1 (again, you see that this is the sum from

a to b “for small values of 1”).
It might be very worthwhile to investigate this finite difference calculus in an algebraic

manner, using difference operators.
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