THE IDEMPOTENT QUIVER OF A NEARRING

GARY PETERSON

JAMES MADISON UNIVERSITY, HARRISONBURG, VIRGINIA USA

R denotes a 0-symmetric left nearring with 1.

Assume R satisfies dcc on right R-subgroups and $J_2(R)$ is nilpotent.

An idempotent e of R is **primitive** if there does not exist an idempotent $f \in R$ such that ef = f and $fe \neq e$.

A right *R*-subgroup *M* of *R* is **self-monogenic** if mM = M for some $m \in M$.

Theorem 1. Let e be an idempotent of R. TFAE:

1. e is primitive.

2. eR is a minimal self-monogenic right R-subgroup of R.

3. eR is a minimal nonnilpotent right *R*-subgroup of *R*.

A set of idempotents e_1, \ldots, e_n of R is **principal** if for any $\overline{r} \in \overline{R} = R/J_2(R)$,

$$\overline{r} = \overline{e_1 r} + \dots + \overline{e_n r}.$$

A **PPO-set** is a principal set of primitive orthogonal idempotents.

Theorem 2. Suppose that I is a nilpotent ideal of R and $\varepsilon_1, \ldots, \varepsilon_n$ is a set of primitive orthogonal idempotents of $\overline{R} = R/I$. Then there exists a set of primitive orthogonal idempotents e_1, \ldots, e_n of R such that $\overline{e_i} = \varepsilon_i$.

Theorem 3. PPO-sets exist.

Outline of Proof. Let

$$\overline{R} = R/J_2(R) = A_1 \oplus \dots \oplus A_n$$

be Wedderburn decomposition of \overline{R} into minimal right ideals. Write

$$1 = \varepsilon_1 + \dots + \varepsilon_n,$$

 $\varepsilon_i \in A_i$. Now lift $\varepsilon_1, \ldots, \varepsilon_n$ to set of primitive orthogonal idempotents e_1, \ldots, e_n of R.

Theorem 4. A set of primitive orthogonal idempotents e_1, \ldots, e_n is a *PPO-set* \Leftrightarrow $Ann_R(e_1, \ldots, e_n)$ is nilpotent.

Theorem 5. A nonnilpotent right R-subgroup of R contains a primitive idempotent.

Def. Two primitive idempotents e and f are **linked** if there exist primitive idempotents

$$e = e_1, e_2, \dots, e_n = f$$

such that $e_i R$ and $e_{i+1} R$ have isomorphic *R*-factors for each *i*.

Theorem 6. Let e_1 and e_2 be primitive idempotents of R. e_1R and e_2R have isomorphic R-factors \Leftrightarrow there exists a primitive idempotent g such that $e_1Rg \neq 0$ and $e_2Rg \neq 0$.

Alt. Def. Two primitive idempotents e and f are linked if there exist primitive idempotents

$$e = e_1, e_2, \dots, e_n = f$$

such that $e_i Re_{i+1} \neq 0$ or $e_{i+1} Re_i \neq 0$ for each *i*.

Fix a PPO-set $W = \{e_1, \ldots, e_n\}$ of R.

Let W_1, \ldots, W_r be equivalence classes of W under linkage.

Theorem 7. *R* is uniquely expressible as

 $R = B_1 \oplus \cdots \oplus B_t$

where each B_i is an indecomposable ideal of R.

The ideals B_i are called the **blocks** of R.

Theorem 8. If R is tame, r = t and the ideals generated by the equivalence classes W_i are the same as the blocks of R.

An *R*-module *M* is **block indecomposable** if *M* cannot be written as a direct sum $M_1 \oplus M_2$ where M_1 and M_2 have no isomorphic *R*-factors.

Theorem 9. If G is a faithful tame R-module, then G is uniquely expressible as

$$G = G_1 \oplus \ldots \oplus G_t$$

where each G_i is a block indecomposable R-ideal of G and $G_i = GB_i$.

The *R*-ideals G_i are called the **blocks** of *G*.

 $\mathbf{2}$

Theorem 10. For $e_i, e_j \in W$, TFAE:

- 1. $e_i \underline{R} \simeq e_j \underline{R}$.
- 2. $\overline{e_i}\overline{R} \simeq \overline{e_j}\overline{R}$ where $\overline{R} = R/J_2(R)$.
- 3. $e_i r e_j$ is not in $J_2(R)$ for some $r \in R J_2(R)$.
- 4. $e_i Re_j R$ contains a primitive idempotent.

Let $e_i \sim e_j$ if one of 1-4 of Theorem 10 holds. Note that if $e_i \sim e_j$, then e_i and e_j are linked.

Choose a set of representatives

$$V = \{e_1, \dots, e_m\}$$

(relabeling if necessary) of the equivalence classes of W under \sim .

The **quiver** of R, denoted $\Gamma(R)$, is the directed graph with vertex set V and directed edges formed by drawing an arrow from e_i to e_j if $e_i Re_i \neq 0$.

Theorem 11. $e_i Re_j \neq 0 \Leftrightarrow e_i J_2(R) e_j \neq 0$.

Theorem 12. If W' is another PPO-set of R and if V' is a set of equivalence class representatives of W' under \sim , then the quivers formed by V and V' are isomorphic.

Theorem 13. If R is tame and G is a faithful tame R-module, then the connected components of $\Gamma(R)$ are in one-to-one correspondence with the blocks of R and G.

Suppose G is a faithful tame R-module.

The socle of G, Soc(G), is the sum of the minimal R-ideals of G.

The **socle series** of G is

 $0 \leq \operatorname{Soc}_1(G) \leq \operatorname{Soc}_2(G) \leq \dots$

where $\operatorname{Soc}_1(G) = \operatorname{Soc}(G)$ and $\operatorname{Soc}_{i+1}(G)/\operatorname{Soc}_i(G) = \operatorname{Soc}(G/\operatorname{Soc}_i(G))$.

Theorem 14. There exists an n such that $\operatorname{Soc}_n(G) = G$ and $\operatorname{Soc}_{i+1}(G)/\operatorname{Soc}_i(G)$ is a direct sum of type 2 *R*-modules. Also, if eis a primitive idempotent and $\overline{R} = R/J_2(R)$, \overline{eR} is isomorphic to a summand of $\operatorname{Soc}_{i+1}(G)/\operatorname{Soc}_i(G)$ for some i.

Theorem 15. Suppose H < K < L are *R*-ideals of *G* such that K/H and L/K are nonisomorphic type 2 *R*-modules. Let $e, f \in V$ such that

GARY PETERSON

 $\overline{eR} \simeq L/K$ and $\overline{fR} \simeq K/H$. If L/H is an indecomposable R-module, then $\Gamma(R)$ contains an arrow from e to f

Theorem 16. Suppose $e \in V$. If H is a type 2 summand of Soc(G) such that $\overline{eR} \simeq H$ and G/Soc(G) contains no factor isomorphic to H, then e cannot be an initial vertex of an arrow of $\Gamma(R)$.

USING SONATA TO CALCULATE QUIVERS

- 1. Find the set of nonzero idempotents I of R.
- 2. Use the definition of primitive idempotent to find the set of primitive idempotents P from I.
- 3. Filter a PPO-set W from P as follows:
 - (i) Choose an element e_1 of P. If $\operatorname{Ann}_R(e_1) \cap P = \emptyset$, done. If not, choose an element e_2 in $\operatorname{Ann}_R(e_1) \cap P$.
 - (ii) If $e_2e_1 = 0$, go to (iii). If not, let

$$f = (e_1 - e_2 e_1)e_1.$$

Choose $f_1 \in fR \cap P$.

Let
$$e_1 = f_1 f$$
.

- (iii) Consider $\operatorname{Ann}_R(e_1, e_2) \cap P \ldots$
- 4. To find V, proceed through

 e_1, e_2, \ldots, e_n , deleting e_j using one of the following approaches:

- (i) if for some i < j we have $e_i R \simeq e_j R$,
- (ii) if for some i < j we have $\overline{e_i}\overline{R} \simeq \overline{e_j}\overline{R}$,
- (iii) if for some i < j we have $e_i r e_j$ is not in $J_2(R)$ for some $r \in R J_2(R)$
- (iv) if for some i < j we have $e_i R e_j R \cap P \neq \emptyset$.
- 5. Determine the set of directed edges E of $\Gamma(R)$ by having an arrow from e_i to e_j whenever $e_i R e_j \neq 0$ (or $e_i J_2(R) e_j \neq 0$) and draw the quiver $\Gamma(R)$.