Let R be a subnear-ring of $M_0(\Gamma)$ where Γ is a finite group, and Ω be a minimal faithful R-group.

The **nil-rigid series** of R

$$\{0\} \subseteq L_1 \subset C_1 \subset L_2 \subset \dots \subset C_{\alpha-1} \subset L_\alpha \subset C_\alpha = R$$
$$L_1 := J_0(R),$$
$$C_1/L_1 = Soi(R/L_1),$$
$$L_2/C_1 = J_0(R/C_1) ,$$
$$\dots$$
$$L_\alpha/C_{\alpha-1} = J_0(R/C_{\alpha-1})$$
$$C_\alpha/L_\alpha = Soi(R/L_\alpha).$$

The integer $\alpha \geq 0$ is called the **nil-rigid length** of R

 $Soi(R) = \bigcap_{K \in \mathcal{K}(\Omega)} (0: K),$ where $\mathcal{K}(\Omega)$ is a class of *R*-subgroups of Ω with no *R*-groups of type-0 as direct summands

Motivation

The nil-rigid length -

a measure of how far $J_s(R)$ is from being nilpotent

Thrm. [Hartney]

 $J_s(R)$ is nilpotent if and only if $\alpha = 1$

That is,

Nil-rigid length $\alpha > 1 \Rightarrow J_s(R)$ is not nilpotent

There exists a minimal ideal A modulo which $J_s(R)$ is nilpotent, called the *s*-socle.

ie.
$$(J_s(R)/A)^m = (0)$$

It is known [Hartney] that

 $A \subset J_s(R) \cap C_{\alpha-1}$ and $A \not\subset L_{\alpha-1}$

Questions:

How does A relate to the s-socle of $\mathbb{M}_n(R)$?

What if $\alpha < \alpha_{\mathbb{M}_n(R)}$?

When is $\alpha_{\mathbb{M}_n(R)} > \alpha$?

Problem :

No Computer software handles matrix near-rings

Proposition [Betsch]

Let I be an ideal of R, Γ a group and $\nu \in \{0, 1, 2\}$.

(a) If Γ is an *R*-group with $I \subseteq (0 : \Gamma)$ then

 $(r+I)\gamma := r\gamma$ makes Γ into an R/I-group.

If $_{R}\Gamma$ is of type- ν , so is $_{R/I}\Gamma$.

If $_{R}\Gamma$ is faithful, then so is $_{R/I}\Gamma$.

Proposition 1. Let Ω be a faithful *R*-group. Then $\Gamma \in \mathcal{K}(R/I)$ if and only if $\Gamma \in \mathcal{K}(R)$, with $I \subset (0 : \Gamma)$.

Lemma 1. Consider the following strictly descending chain of *R*-groups

$$\Delta_1 \supset \Delta_2 \supset \Delta_3 \supset \cdots \supset \Delta_\beta \tag{1}$$

where $\beta \in \mathbb{N}$. Then each Δ_{i+1} is an (R/I_i) -group, where $I_i = (0 : \Delta_i), i = 1, 2, ..., \beta - 1$.

Moreover, R has an ascending chain of ideals,

$$I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots \subseteq I_\beta, \tag{2}$$

corresponding to chain (1).

Defn.1 Let Ω be a faithful finite *R*-group, and let

 $\Omega_1 \supset \Omega_2 \supset \ldots \supset \Omega_{\beta-1} \supset \Omega_{\beta},$ (3) be a strictly descending chain of *R*-subgroups of Ω such that

 Ω_1 is a maximal *R*-group of type-0, and

 Ω_{β} is an *R*-group of type-*s*.

Chain (3) is an Ω -chain if for every pair (Ω_i, Ω_{i+1}) , $1 \le i < \beta$, of consecutive members of chain (3) :

whenever Ω_i is of type-0 then $\Omega_{i+1} \in \mathcal{K}(\Omega)$ and it is

a maximal *R*-group in $\mathcal{K}(\Omega)$ contained in Ω_i ; or whenever $\Omega_i \in \mathcal{K}(\Omega)$ then Ω_{i+1} is a maximal type-0

R-group contained in Ω_i .

The Ω -length of an Ω -chain (3) is $\frac{\beta-1}{2}$.

A \mathcal{KG} -chain of Ω is an Ω -chain of maximal Ω -length.

The Ω -length of a \mathcal{KG} -chain is called the \mathcal{KG} -length of Ω .

Defn.2 Let Ω be a finite faithful *R*-group and let $\Omega_{1,1} \supset \Omega_{1,2} \supset \ldots \supset \Omega_{1,(l(1)-1)} \supset \Omega_{1,l(1)},$ $\Omega_{2,1} \supset \Omega_{2,2} \supset \ldots \supset \Omega_{2,(l(2)-1)} \supset \Omega_{2,l(2)},$ \ldots $\Omega_{\lambda,1} \supset \Omega_{\lambda,2} \supset \ldots \supset \Omega_{\lambda,(l(\lambda)-1)} \supset \Omega_{\lambda,l(\lambda)},$

be a list of all Ω -chains.

Define the *j*-th Ω -ideal, T_j , of R to be the intersection of annihilators of the *j*-th members of all Ω -chains of lengths $l(\rho) \ge j$. That is,

$$T_j := \bigcap_{j \leq l(\rho)} \left(0 : \Omega_{\rho,j} \right), \quad j = 1, 2, \dots, \tau(\Omega),$$

where $\tau(\Omega) = \max\{l(i) \mid i = 1, 2, ..., \lambda\}.$

We also define $T_0 := (0)$ and $T_{\tau(\Omega)+1} := R$.

Thrm.1 Let Ω be a finite faithful *R*-group.

The Ω -ideals form an ascending series of ideals of R. That is,

 $T_1 \subset T_2 \subset T_3 \subset \ldots \subset T_{\tau(\Omega)},$

where T_i is as in Definition 2.

Thrm.2 Let $\Omega := (R, +)$, and T_1 be the 1st Ω -ideal of R. Then,

$$J_0(R) = T_1 = L_1,$$

where L_1 is as in the definition of the nil-rigid series.

Thrm.3 Let $\Omega := (R, +)$, and T_2 be the $2^{nd} \Omega$ -ideal of R. Let L_1 and C_1 be as in the definition of the nil-rigid series of R. Then

$$T_2/L_1 \supseteq Soi(R/L_1).$$

Moreover $T_2 \supseteq C_1$.

Thrm.4 Let $\Omega := (R, +)$, and ideals C_1 and L_2 be as in the definition of the nil-rigid series of R. Let T_3 be the 3rd Ω -ideal of R. If $\tau(\Omega) \ge 3$ then

$$T_3/C_1 \supseteq J_0(R/C_1).$$

Moreover $T_3 \supset L_2$.

Lemma.2 Let the nil-rigid length $\alpha > 3$, and $\Omega := (R, +)$ be a faithful *R*-group with *KG*-length $\frac{\tau(\Omega)-1}{2} > 2$. For any *KG*-chain

 $\Omega_{i,1} \supset \Omega_{i,2} \supset \ldots \supset \Omega_{i,(\tau(\Omega)-1)} \supset \Omega_{i,\tau(\Omega)},$

(a) If j is even then $\Omega_{i,j}$ is in $\mathcal{K}(R/L_{j/2})$; and (b) If j is odd then $\Omega_{i,j}$ is a type-0 $(R/C_{(j-1)/2})$ -group. **Thrm.A.** Let the nil-rigid length $\alpha > 3$, and $\Omega := (R, +)$ be a faithful *R*-group. Let T_j be the *j*-th Ω -ideal of *R*, for $2 \le j \le \tau(\Omega) + 1$, and $L_{(j/2)}$ and $C_{(j-1)/2}$ be ideals of *R* in the nil-rigid series.

(a) If j is even then $T_j/L_{(j/2)} \supset Soi(R/L_{(j/2)})$; and (b) If j is odd then $T_j/L_{(j-1)/2} \supset J_0(R/C_{(j-1)/2})$.

Thrm.B. Let $\Omega := (R, +)$. The series of Ω -ideals,

$$T_1 \subset T_2 \subset T_3 \subset \ldots \subset T_{\tau(\Omega)} \subset T_{\tau(\Omega)+1} = R,$$

and the nil-rigid series of R,

$$L_1 \subset C_1 \subset L_2 \subset C_2 \subset \ldots \subset L_\alpha \subset C_\alpha = R,$$

are related as

$$T_{2i-1} \supseteq L_i$$
 and $T_{2i} \supseteq C_i$,

where $1 < i < \alpha$.

Thrm.5 Let $\Omega := (R, +)$ be a faithful *R*-group with \mathcal{KG} -length $k = \frac{\tau(\Omega)-1}{2}$. For any two consecutive members of a \mathcal{KG} -chain, $\Omega_{i,j}$ and $\Omega_{i,j+1}$,

if $\Omega_{i,j+1}$ is an R-kernel to $\Omega_{i,j} \in \mathcal{K}(\Omega)$, then

j is even and $\Omega_{i,j}/\Omega_{i,j+1}$ is an $(R/C_{j/2})$ -group.

Thrm.6 Let $\Omega := (R, +)$, be a faithful *R*-group with the Ω -ideal series and the nil-rigid series as in Theorem B.

If Ω has a \mathcal{KG} -length $k = \frac{\tau(\Omega) - 1}{2}$, then the nil-rigid length of R,

$$\alpha \geq k+1.$$

Conjecture:

If the \mathcal{KG} -length of Ω is k, then the nil-rigid length

$$\alpha = k + 1.$$