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Definition: (F,+,-) is called a neardomain if
» (F,+) is a loop with two-sided inverses (i.e.,
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» a(b+c)=ab+ac
» ddap € F suchthata+ (b+c)=(a+b)+dap-C
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Example: Every nearfield is a neardomain.
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The converse is true.

F — To(F) is categorial

More precisely, T, is an equivalence of categories.



Sharply 3-transitive groups lead to special neardomains called
KT-fields.



Sharply 3-transitive groups lead to special neardomains called
KT-fields.

Sharply k-transitive groups besides Sy, Sk.11,Ak12
k =4: M1

k =5: Mo

k >6: none



Characterization

F is a nearfield
<= T,(F) contains an abelian, normal subgroup A # 1
<= T,(F) contains a normal subgroup A # 1

acting fixed-point-free on F

Inthiscase A isisomorphicto (F,+)



Planarity

A neardomain F is called planar if the equation
a+bx =x

has a solution fora,b € F, b # 1.



Planarity

A neardomain F is called planar if the equation
a+bx =x

has a solution fora,b € F, b # 1.

F is a planar neardomain
<= F is a planar nearfield
<= the fixed-point-free elements of T,(F) form a subgroup



Additive Structure

(F,+) is a K-loop (or Bruck loop), i.e.,
» There exists 0 inF;

» a-+ X = b has a unique solution;
»a+(b+(a+c))=(a+(b+a))+c (Bolidentity);



Additive Structure

(F,+) is a K-loop (or Bruck loop), i.e.,
» There exists 0 inF;
» a-+ X = b has a unique solution;
»a+(b+(a+c))=(a+(b+a))+c (Bol-identity);
» —(a+b)=(-a)+ (-b).
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Properties

Leta,b € F. Then s, : F — F, defined by
a+(b+c)=(a+b)+dap(c),

is a bijection. We have

> 5a,b = 5a,b+a

Theorem: 4§, € AutF.
(FUNK, NAGY '93; GOODAIRE, ROBINSON '94; KREUZER '98)
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Characteristic

K-loops are left power-alternative, i.e.,

vnmeZ:n-a+(m-a+b)y=(n+m)-a+b

Every neardomain has a characteristic ~ (similar to fields).

charF is either a prime or O
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Partial Results:

» If F is finite, then F is a nearfield (ZASSENHAUS '34)

» If To(F) is locally compact, connected, then F is a nearfield
(TiTs '52)

» If charF =3, thenF is a nearfield
(KERBY, WEFELSCHEID '72)

» If F is a KT-field with charF =1 mod 3,
then F is a nearfield (KERBY '74)
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(G, P) permutation group is called Frobenius group if
» transitive, but not regular
» one point stabilizer Q is fixed point free



Generalization

(G, P) permutation group is called Frobenius group if
» transitive, but not regular
» one point stabilizer Q is fixed point free

(G, P) has many involutions if
» J:={g € G;g? = 1} is transitive
» [QNJI7| <1



» If J acts fixed point free, then L := J “is” a K-loop of
exponent 2.
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» If J acts fixed point free, then L := J “is” a K-loop of
exponent 2.

» If not, then L := J#v “is” a K-loop (v € J* fixed).

G can be reconstructed from L.
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Put D(L):= (dap;abel).
For any group H, D(L) C H C AutL one can form

G:=L xgH
If .:x—x"1eH, then we have the

Theorem: G is a Frobenius group with many involutions, iff
H acts fixed point free on L.

G is sharply 2-transitive, iff in addition H acts transitive.



Examples

» G = PSL(2,R) acting on the set of positive definite,
symmetric matrices of determinant 1 by X — AXAT is a
Frobenius group with many involutions.
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Examples

» G = PSL(2,R) acting on the set of positive definite,
symmetric matrices of determinant 1 by X — AXAT is a
Frobenius group with many involutions.

» L := K[[t]] with an involutory automorphism x +— X. Put

B a+b
~ 1+tab

adh:

then (L, @) is a K-loop.

» If charK = 2, then L is of exponent 2.
» If charK # 2, then every element of L has infinite order.



