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Definition: (F ,+, · ) is called a neardomain if

I (F ,+) is a loop with two-sided inverses (i.e.,
a + b = 0 =⇒ b + a = 0)

I (F ∗, · ) is a group
I 0a = 0
I a(b + c) = ab + ac
I ∃da,b ∈ F such that a + (b + c) = (a + b) + da,b · c

Example: Every nearfield is a neardomain.
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Then the group

T2(F ) := {x 7→ a + bx ; a, b ∈ F , b 6= 0}

acts sharply 2-transitively on F .

The converse is true.

F 7→ T2(F ) is categorial

More precisely, T2 is an equivalence of categories.
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Sharply 3-transitive groups lead to special neardomains called
KT-fields.

Sharply k -transitive groups besides Sk , Sk+1, Ak+2

k = 4: M11

k = 5: M12

k ≥ 6: none
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Characterization

F is a nearfield
⇐⇒ T2(F ) contains an abelian, normal subgroup A 6= 1
⇐⇒ T2(F ) contains a normal subgroup A 6= 1

acting fixed-point-free on F

In this case A is isomorphic to (F ,+)



Planarity

A neardomain F is called planar if the equation

a + bx = x

has a solution for a, b ∈ F , b 6= 1.

F is a planar neardomain
⇐⇒ F is a planar nearfield
⇐⇒ the fixed-point-free elements of T2(F ) form a subgroup
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Additive Structure

(F ,+) is a K-loop (or Bruck loop), i.e.,
I There exists 0 in F ;

I a + x = b has a unique solution;
I a +

(
b + (a + c)

)
=

(
a + (b + a)

)
+ c (Bol-identity);

I −(a + b) = (−a) + (−b).
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Properties

Let a, b ∈ F . Then δa,b : F → F , defined by

a + (b + c) = (a + b) + δa,b(c),

is a bijection.

We have

I δa,b = δa,b+a

Theorem: δa,b ∈ Aut F .
(FUNK, NAGY ’93; GOODAIRE, ROBINSON ’94; KREUZER ’98)



Properties

Let a, b ∈ F . Then δa,b : F → F , defined by

a + (b + c) = (a + b) + δa,b(c),

is a bijection. We have

I δa,b = δa,b+a

Theorem: δa,b ∈ Aut F .
(FUNK, NAGY ’93; GOODAIRE, ROBINSON ’94; KREUZER ’98)



Properties

Let a, b ∈ F . Then δa,b : F → F , defined by

a + (b + c) = (a + b) + δa,b(c),

is a bijection. We have

I δa,b = δa,b+a

Theorem: δa,b ∈ Aut F .
(FUNK, NAGY ’93; GOODAIRE, ROBINSON ’94; KREUZER ’98)



K-loops are left power-alternative, i.e.,

∀n, m ∈ Z : n · a + (m · a + b) = (n + m) · a + b

Every neardomain has a characteristic (similar to fields).

charF is either a prime or 0
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Partial Results:

I If F is finite, then F is a nearfield (ZASSENHAUS ’34)

I If T2(F ) is locally compact, connected, then F is a nearfield
(TITS ’52)

I If charF = 3, then F is a nearfield
(KERBY, WEFELSCHEID ’72)

I If F is a KT-field with charF ≡ 1 mod 3,
then F is a nearfield (KERBY ’74)
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Generalization

(G, P) permutation group is called Frobenius group if
I transitive, but not regular
I one point stabilizer Ω is fixed point free

(G, P) has many involutions if

I J := {g ∈ G; g2 = 1} is transitive
I |Ω ∩ J#| ≤ 1
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I If J acts fixed point free, then L := J “is” a K-loop of
exponent 2.

I If not, then L := J#ν “is” a K-loop (ν ∈ J# fixed).

G can be reconstructed from L.
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Put D(L) :=
〈
δa,b; a, b ∈ L

〉
.

For any group H, D(L) ⊆ H ⊆ Aut L one can form

G := L×Q H

If ι : x 7→ x−1 ∈ H, then we have the

Theorem: G is a Frobenius group with many involutions, iff
H acts fixed point free on L.

G is sharply 2-transitive, iff in addition H acts transitive.
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Examples

I G = PSL(2, R) acting on the set of positive definite,
symmetric matrices of determinant 1 by X 7→ AXAT is a
Frobenius group with many involutions.

I L := K [[t ]] with an involutory automorphism x 7→ x̄ . Put

a⊕ b :=
a + b

1 + tab̄

then (L,⊕) is a K-loop.

I If charK = 2, then L is of exponent 2.
I If charK 6= 2, then every element of L has infinite order.
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