On solvable polynomial equations over \mathbb{Z}_n and some remarks on zero-preserving polynomials over a ring R with $J(R)^2 = 0$

Joerg Forstner Department of Algebra, Johannes Kepler University Linz, Austria chesshero@algebra.uni-linz.ac.at

Basics

Proposition 1. Every finite ring R can be uniquely represented (up to order) as a direct product of rings R_i with cardinality of a prime power.

Proposition 2. Let R be a finite ring and let $R_1 \oplus \ldots \oplus R_k$ be the decomposition as in Proposition 1. Then

 $R[x] \cong R_1[x] \oplus \ldots \oplus R_k[x]$

Theorem 1. Let $n \in \mathbb{N}$, let p_1, \ldots, p_k be pairwise different primes, $t_1, \ldots, t_k \in \mathbb{N}$ with $n = \prod_{i=1}^k p_i^{t_i}$. Then

$$(\mathbb{Z}_n[x], +, \cdot) \cong (\mathbb{Z}_{p_1^{t_1}}[x], +, \cdot) \times \ldots \times (\mathbb{Z}_{p_k^{t_k}}[x], +, \cdot)$$

Concepts of universal algebra

Definition 1. Let A be an algebra of the variety V with Ω as its set of operations and let $X = \{x_i \mid i \in I\}$ be a set of indeterminates. The set A(X, V) as constructed in LN is called the *V*-polynomial algebra over A in the set of indeterminates X. Its elements will be called polynomials in X over A.

Definition 2. Let A be an algebra of the variety V. An algebra B of V containing A as a subalgebra is called a *V*-extension of A.

Definition 3. Let V be any variety, A an algebra of V and $X = \{x_1, \ldots, x_k\}$ be a finite set of indeterminates. An algebraic equation over (A, V)in the indeterminates x_1, \ldots, x_k is a pair (f, g) or shortly written

$$f = g$$

where $f, g \in A(X, V)$.

Hence we can talk of a congruence Θ_P generated by the equation P: f = g.

[–] Typeset by FoilT $_{\!E\!}\!\mathrm{X}$ –

Solvable polynomial equations

Definition 4. Let B be an arbitrary V-extension of A. An element $(b_1, \ldots, b_k) \in B^k$ is called **solution** of the equation f = g if $f(b_1, \ldots, b_k) = g(b_1, \ldots, b_k)$.

Definition 5. The equation f = g is *solvable* if there exists a *V*-extension *B* of *A* such that the system has a solution in *B*.

Definition 6. A congruence Θ on A(X, V) is called *separating*, if $a\Theta b$ implies a = b for all $a, b \in A$.

Theorem 2. The algebraic equation P : f = g over (A, V) in $X = \{x\}$ is solvable if and only if the congruence Θ_P is separating.

Theorem 3. Let $f \in \mathbb{Z}_n[x], V$ the variety of commutative rings with identity and consider the equation f = 0. Let (f) denote the ideal generated by f. TFAE:

1. f = 0 is solvable.

2. $\nexists c \in \mathbb{Z}_n : c \neq 0 \text{ and } c \in (f).$

Definition 7. Let R be a commutative ring with identity. An element $x \in R$ is called **unit** if it is invertible, i.e. there exists $y \in R$ such that $x \cdot y = y \cdot x = 1$.

Theorem 4. Let p be a prime, $\alpha \in \mathbb{N}$ and let $f \in \mathbb{Z}_{p^{\alpha}}[x], f \neq 0$. Then we have

f = 0 is not solvable $\Leftrightarrow f$ is of the form $f = k \cdot u$,

where k is a constant, $k \neq 0$, and u is a unit in $\mathbb{Z}_{p^{\alpha}}[x]$.

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

Lemma 1. Let p be a prime, $\alpha \in \mathbb{N}$ and let $a = a_0 + a_1 x + \ldots + a_n x^n$, $b = b_0 + b_1 x + \ldots + b_m x^m \in \mathbb{Z}_{p^{\alpha}}[x]$. Moreover, let $c \neq 0$ be constant in $\mathbb{Z}_{p^{\alpha}}[x]$. Then we have

$$a \cdot b = c \Rightarrow (a = c_1 \cdot u_1 \land b = c_2 \cdot u_2),$$

where c_1, c_2 are constant, $c_1 \neq 0, c_2 \neq 0$, and u_1, u_2 are units in $\mathbb{Z}_{p^{\alpha}}[x]$.

Remarks on zero-preserving polynomials over a ring R with $J(R)^2 = 0$

Definition 8. We denote the set of all univariate polynomial functions over R by P(R) and the set $\{p \in P(R) \mid p(0) = 0\}$ of zero-preserving polynomial functions over R by $P_0(R)$.

The set of all endomorphisms on J(R) will be denoted by End(J(R)).

Proposition 3. $\forall a, b \in I : (a - b \in I \Rightarrow p(a) - p(b) \in I)$

Lemma 2. Let R be a ring and let J(R) be its Jacobson radical. Then for all $a \in J(R)$ and for all $p \in P_0(R)$ we have: $p(a) \in J(R)$.

Lemma 3. Let A and B be ideals of a ring R and let AB denote the ideal product of A and B. Further, let $p \in P_0(R)$. Then for all $a \in A, b \in B$ we have:

$$p(a) + p(b) \equiv p(a+b) \mod AB$$

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

Proposition 4. Let R be a ring with $J(R)^2 = 0$. Then $P_0(R)|_{J(R)} \subseteq End(J(R))$.

We define an operation $* : \mathbb{N}_0 \times R \to R$, $(m, r) \mapsto m * r := \underbrace{r + \ldots + r}_{m \ times}$.

Lemma 4. If for all $f \in End(J(R))$ there exists a $k \in \mathbb{N}_0$ such that for all $j \in J(R)$ we have f(j) = k*j, then $End(J(R)) \subseteq \{\phi_k : x \mapsto k*x \mid k \in \mathbb{N}_0, x \in J(R)\} \subseteq P_0(R)_{|_{J(R)}}$.

Proposition 5. Let R be a ring with $J(R)^2 = 0$. If the group (J(R), +) is cyclic (let's say generated by c), then $End(J(R)) \subseteq \{\phi_k : x \mapsto k * x \mid k \in \mathbb{N}_0, x \in J(R)\} \subseteq P_0(R)|_{J(R)}$.