ON THE MULTIPLICATION RING OF A PRIME RING

WALLACE S. MARTINDALE, III
PHILADELPHIA, USA
(WITH MATEJ BREŠAR)

Given a positive integer n, we show there is a positive integer $f(n)$ with the following property. Let R be a prime ring with extended centroid C, and let $a_{1}, a_{2} \ldots, a_{n}$ be C-independent elements of R. Then there is an element $p=\sum_{j=1}^{m} L_{u_{j}} R_{v_{j}}$ in the multiplication ring of R such that $m \leq f(n)$, $p\left(a_{1}\right)=0$ and $p\left(a_{2}\right), \ldots, p\left(a_{n}\right)$ are C-independent. A similar approach is used in computing the strong degree of the direct product of simple artinian rings.

