CLASSIFICATION OF TOTAL VALUATION RINGS OF $K(X; \sigma, \delta)$ CONTAINING X, X^{-1}

SHIGERU KOBAYASHI NARUTO-SHI, JAPAN

Let σ be an endomorphism of a skew field K. A (left) σ -derivation of K is any additive map $\delta: K \to K$ such that $\delta(ab) = \sigma(a)\delta(b) + \delta(a)b$ for all $a, b \in K$. Then there exists a ring S, containing K as a subring, such that S is a free left K-module with a basis of the form 1, X, X^2 , ..., and $Xa = \sigma(a)X + \delta(a)$ for all $a \in K$. The ring S is denoted $K[X; \sigma, \delta]$ and is called a skew polynomial ring of K. It is known that the ring $K[X;\sigma,\delta]$ is a principal left ideal domain, so that $K[X;\sigma,\delta]$ is a left Ore domain. We denote $K(X; \sigma, \delta)$ as the quotient division ring of $K[X; \sigma, \delta]$. We say that the pair (K, V) is a valued skew field if K is a skew field with the subring V such that $a \in K \setminus V$ implies $a^{-1} \in V$, i.e., V is a *total valuation* ring of K. We consider the extensions of V in $K(X; \sigma, \delta)$, i.e., the total valuation ring R of $K(X; \sigma, \delta)$ with $R \cap K = V$. Let R be an extension of V in $K(X;\sigma,\delta)$ and J(V) the Jacobson radical of V and J(R) be the Jacobson radical of R. Then since $J(V) = J(R) \cap K$, V/J(V) is a subring of R/J(R). If $\pi_V: V \to V/J(V)$ is the canonical map, one put $\pi_V(a) = \bar{a}$ for all $a \in V$, and also $\pi_R : R \to R/J(R)$. An element \overline{f} in R/J(R) is called (left) transcendental over V/J(V) if for any natural number n, and any elements $\overline{a_0}, \overline{a_1}, \cdots, \overline{a_n} \in V/J(V), \overline{a_0} + \overline{a_1}\overline{f} + \cdots + \overline{a_n}\overline{f}^n = \overline{0}$ implies $\overline{a_i} = \overline{0}$ for all i(i = 0, ..., n). (σ, δ) is called *compatible* with V if $\sigma(V) \subseteq V$, $\sigma(J(V)) \subseteq V$ J(V), and $\delta(V) \subseteq V$, $\delta(J(V)) \subseteq J(V)$ in order to characterize the existence of an extension of V in which \overline{X} is transcendental over V/J(V). If V is a total valuation ring and (σ, δ) is compatible with V, then $J(V)[X; \sigma, \delta]$ is localizable and $R^{(1)} = V[X; \sigma, \delta]_{J(V)[X; \sigma, \delta]}$ is a total valuation ring with $R^{(1)} \cap K = V$ and \overline{X} is transcendental over V/J(V).

We shall show that there exists a total valuation ring R of $K(X; \sigma, \delta)$ which is an extension of V and \overline{X} is transcendental over V/J(V) if and only if (σ, δ) is compatible with V. R is exactly equal to $R^{(1)}$. If X and X^{-1} are contained in R and \overline{X} is algebraic over V/J(V), the structure of R also can be clarified, so we can classify the total valuation ring R of $K(X, \sigma, \delta)$ which containing X and X^{-1} .