DERIVATIONS AND SKEW POLYNOMIAL RINGS

CHEN-LIAN CHUANG
TEIPEI, TAIWAN
(WITH TSIU-KWEN LEE)

Let R be a prime ring and d a derivation of R. Let $\mathrm{E}(R,+)$ denote the ring of additive endomorphisms of R endowed with pointwise addition and composition multiplication. Obviously, $d \in \mathrm{E}(R,+)$. For $a \in R$, let $a_{L} \in \mathrm{E}(R,+)$ denote the left multiplication $a_{L}: x \in$ $R \mapsto a x \in R$. Let S be the subring of $\mathrm{E}(R,+)$ generated by d and all $a_{L}, a \in R$. We shall compute the prime radical and minimal prime ideals of S as follows: Let $R[x ; d]$ be the skew polynomial ring with the multiplication rule: $x r=r x+d(r)$ for $r \in R$. Since $d a_{L}=d(a)_{L}+$ $a_{L} d$ for $a \in R$, the map

$$
\varphi: a_{0} x^{n}+\cdots+a_{n-1} x+a_{n} \mapsto\left(a_{0}\right)_{L} d^{n}+\cdots+\left(a_{n-1}\right)_{L} d+\left(a_{n}\right)_{L} \in S
$$

is a surjective ring homomorphism. φ. Then $R[x ; d] / \mathscr{A} \cong S$, where \mathscr{A} is the kernel of φ. Let \mathscr{P} be the ideal of $R[x ; d]$ including \mathscr{A} such that $\mathscr{P} / \mathscr{A}$ is the prime radical of $R[x ; d] / \mathscr{A}$. Our aim is to describe in the ring $R[x ; d]$ the ideals \mathscr{A}, \mathscr{P} and also the minimal prime ideals over \mathscr{A} in the following way: Let Q denote the symmetric Martindale quotient ring of R. The center C of Q is called the extended centroid of R. Let $C^{(d)}:=\{\alpha \in C: d(\alpha)=0\}$. Matczuk has shown that the center of $Q[x ; d]$ assumes the form $C^{(d)}[\zeta]$. Given $f(\zeta) \in C[\zeta]$, we let

$$
\langle f(\zeta)\rangle:=R[x ; d] \cap f(\zeta) Q[x ; d]
$$

We show that \mathscr{A}, \mathscr{P} and all minimal prime ideals over \mathscr{A} are of the above form and we compute these center elements $f(\zeta)$ explicitly.

Here is an application: Assume that d is a nilpotent derivation. Let m be the least integer such that $d^{m}(R) c=0$ for somr $0 \neq c \in R$. Let $\left(x^{m}\right)$ denote the ideal of $R[x ; d]$ generated by x^{m}. Then $\left(x^{m}\right) \cap R=$ 0 . We extend $\left(x^{m}\right)$ to an ideal \mathscr{M} of $R[x ; d]$ maximal with respect to the property $\mathscr{M} \cap R=0$. The quotient ring $R[x ; d] / \mathscr{M}$ is an extension of R and is called the d-extension of R. Using the above results, we show that $\mathscr{M}=\mathscr{P}$. So the d-extension of R exists uniquely and is isomorphic canonically to the quotient ring of S modulo its prime radical.

