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(WITH TSIU–KWEN LEE)

Let Rbe a prime ring andd a derivation ofR. Let E(R,+) denote
the ring of additive endomorphisms ofR endowed with pointwise
addition and composition multiplication. Obviously,d ∈ E(R,+).
For a ∈ R, let aL ∈ E(R,+) denote the left multiplicationaL : x ∈
R 7→ ax∈ R. Let Sbe the subring of E(R,+) generated byd and all
aL, a ∈ R. We shall compute the prime radical and minimal prime
ideals ofSas follows: LetR[x;d] be the skew polynomial ring with
the multiplication rule:xr = rx+d(r) for r ∈R. SincedaL = d(a)L +
aLd for a∈ R, the map

ϕ : a0xn + · · ·+an−1x+an 7→ (a0)Ldn + · · ·+(an−1)Ld+(an)L ∈ S

is a surjective ring homomorphism.ϕ. ThenR[x;d]/A ∼= S, where
A is the kernel ofϕ. Let P be the ideal ofR[x;d] including A
such thatP/A is the prime radical ofR[x;d]/A . Our aim is to
describe in the ringR[x;d] the idealsA , P and also the minimal
prime ideals overA in the following way: LetQ denote the sym-
metric Martindale quotient ring ofR. The centerC of Q is called the
extended centroid ofR. Let C(d) := {α ∈C : d(α) = 0}. Matczuk
has shown that the center ofQ[x;d] assumes the formC(d)[ζ ]. Given
f (ζ ) ∈C[ζ ], we let

〈 f (ζ )〉 := R[x;d]∩ f (ζ )Q[x;d].
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We show thatA ,P and all minimal prime ideals overA are of the
above form and we compute these center elementsf (ζ ) explicitly.

Here is an application: Assume thatd is a nilpotent derivation.
Let m be the least integer such thatdm(R)c = 0 for somr 06= c∈ R.
Let (xm) denote the ideal ofR[x;d] generated byxm. Then(xm)∩R=
0. We extend(xm) to an idealM of R[x;d] maximal with respect to
the propertyM ∩R= 0. The quotient ringR[x;d]/M is an exten-
sion ofRand is called thed-extension ofR. Using the above results,
we show thatM = P. So thed-extension ofR exists uniquely and
is isomorphic canonically to the quotient ring ofSmodulo its prime
radical.


