DERIVATIONS AND SKEW POLYNOMIAL RINGS

CHEN–LIAN CHUANG *TEIPEI, TAIWAN* (WITH TSIU–KWEN LEE)

Let *R* be a prime ring and *d* a derivation of *R*. Let E(R, +) denote the ring of additive endomorphisms of *R* endowed with pointwise addition and composition multiplication. Obviously, $d \in E(R, +)$. For $a \in R$, let $a_L \in E(R, +)$ denote the left multiplication $a_L: x \in$ $R \mapsto ax \in R$. Let *S* be the subring of E(R, +) generated by *d* and all $a_L, a \in R$. We shall compute the prime radical and minimal prime ideals of *S* as follows: Let R[x;d] be the skew polynomial ring with the multiplication rule: xr = rx + d(r) for $r \in R$. Since $da_L = d(a)_L +$ a_Ld for $a \in R$, the map

$$\varphi: a_0 x^n + \dots + a_{n-1} x + a_n \mapsto (a_0)_L d^n + \dots + (a_{n-1})_L d + (a_n)_L \in S$$

is a surjective ring homomorphism. φ . Then $R[x;d]/\mathscr{A} \cong S$, where \mathscr{A} is the kernel of φ . Let \mathscr{P} be the ideal of R[x;d] including \mathscr{A} such that \mathscr{P}/\mathscr{A} is the prime radical of $R[x;d]/\mathscr{A}$. Our aim is to describe in the ring R[x;d] the ideals \mathscr{A} , \mathscr{P} and also the minimal prime ideals over \mathscr{A} in the following way: Let Q denote the symmetric Martindale quotient ring of R. The center C of Q is called the extended centroid of R. Let $C^{(d)} := \{\alpha \in C : d(\alpha) = 0\}$. Matczuk has shown that the center of Q[x;d] assumes the form $C^{(d)}[\zeta]$. Given $f(\zeta) \in C[\zeta]$, we let

$$\langle f(\zeta) \rangle := R[x;d] \cap f(\zeta)Q[x;d].$$

We show that \mathscr{A}, \mathscr{P} and all minimal prime ideals over \mathscr{A} are of the above form and we compute these center elements $f(\zeta)$ explicitly.

Here is an application: Assume that *d* is a nilpotent derivation. Let *m* be the least integer such that $d^m(R)c = 0$ for somr $0 \neq c \in R$. Let (x^m) denote the ideal of R[x;d] generated by x^m . Then $(x^m) \cap R = 0$. We extend (x^m) to an ideal \mathscr{M} of R[x;d] maximal with respect to the property $\mathscr{M} \cap R = 0$. The quotient ring $R[x;d]/\mathscr{M}$ is an extension of *R* and is called the *d*-extension of *R*. Using the above results, we show that $\mathscr{M} = \mathscr{P}$. So the *d*-extension of *R* exists uniquely and is isomorphic canonically to the quotient ring of *S* modulo its prime radical.