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1. WHAT ARE SEMIRINGS ANYWAY?

A semiring is an algebraic structure, consisting of a nonempty
setR on which we have defined two operations,addition (usually
denoted by +) andmultiplication (usually denoted by· or by con-
catenation) such that the following conditions hold:

(1) Addition is associative and commutative and has a neutral ele-
ment. That is to say,a+(b+c) = (a+b)+c anda+b= b+a
for all a,b,c∈ R and there exists a special element ofR, usu-
ally denoted by 0, such thata+0 = 0+a for all a∈ R. It is
very easy to prove that this element is unique.

(2) Multiplication is associative and has a neutral element. That
is to say,a(bc) = (ab)c for all a,b,c ∈ R and there exists a
special element ofR, usually denoted by 1, such thata1 =
a = 1a for all a∈ R. It is very easy to prove that this element
too is unique. In order to avoid trivial cases, we will always
assume that 16= 0, thus insuring thatRhas at least two distinct
elements.

(3) Multiplication distributes over addition from either side. That
is to say,a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for all
a,b,c∈ R.
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(4) The neutral element with respect to addition is multiplica-
tively absorbing. That is to say,a0 = 0 = 0a for all a∈ R.

In other words, semirings are just “rings without subtraction”.
The basic reference for semirings will be [20].

Given a semiringR, a left RRR-semimoduleM is a nonempty set on
which we have operations of addition and scalar multiplication by
elements ofR (on the left) defined such that:

(1) Addition is associative and commutative and has a neutral el-
ement, usually denoted by 0M. Again, this element can easily
be shown to be unique.

(2) For alla,b∈ Randm,m′ ∈M, we havea(bm) = (ab)m, (a+
b)m= am+bm, anda(m+m′) = am+am′.

(3) For alla∈Randm∈M we have 1m= mand 0m= 0M = a0M.

For example, it is easy to see that ifR is a semiring and ifA is a
nonempty set, then the setRA of all functions fromA to R is a leftR-
semimodule, with scalar multiplication and addition being defined
elementwise.

Just as the study of rings inevitably involves the study of modules
over them, so the study of semirings inevitably involves the study of
semimodules over them.

The most trivial example of a semiring which is not a ring is the
first algebraic structure we encounter in life: the set of nonnegative
integersN, with the usual addition and multiplication. Similarly,
the set of nonnegative real numbersR+ with the usual addition and
multiplication is a semiring which is not a ring. The nontrivial exam-
ples of semirings first appear in the work of German mathematician
Richard Dedekind [11] in 1894, in connection with the algebra of
ideals of a commutative ring (one can add and multiply ideals – one
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cannot subtract them) and were later studied independently by alge-
braists, especially by the American mathematician H. S. Vandiver,
who worked very hard to get them accepted as a fundamental alge-
braic structure, being basically the “best”structure which includes
both rings and bounded distributive lattices [51]. He was not suc-
cessful, however, and – with only a few exceptions – semirings had
fallen into disuse and were well on their way to mathematical obliv-
ion until they were “rescued” during the late 1960’s when real and
significant applications were found for them. These include:

Automata theory: During the late 1960’s, Samuel Eilenberg be-
came interested in formal language and automata theory. Basing his
ideas on the work of Kleene [27] and working in concert with other
major figures in the field, such as Arto Salomaa, Marcel Schützenberger,
Jesse Wright, and others, he constructed a comprehensive algebraic
theory, published in the first two volumes of a projected (but never
completed) four-volume treatiseAutomata, Languages, and Machines,
the first volume of which appeared in 1974 [16]. A few years earlier,
a slim volume by John Horton Conway [9], based on his own inde-
pendent study, alamo appeared, and those were followed in 1978
by another seminal work by Salomaa and Soittola [45]. The ba-
sic algebraic structures used in these books, and the publications
of many other researchers, were semirings. One should note that
one of the basic semirings which appears in this corpus is thetrop-
ical semiring (N∪{∞},min,+), which was first introduced by Si-
mon [48] (and named by Jean Eric Pin). I mention this semiring
in particular, because recently there has been a lot of confusion in
the literature between this semiring and theoptimization algebra
Rmin = (R∪{∞},min,+), which I will mention in a minute. How-
ever, we have to keep them straight, because the tropical semiring
itself is finding new and important applications. Indeed, the trop-
ical semiring and its properties have been used in recent work to
construct efficient algorithms for various classification purposes. A
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typical example is the work of Allauzen and Mohri in 2003 on test-
ing the twin-primes property [2]. There, they construct an efficient
algorithm for testing the twin primes property using weighted au-
tomata over commutative and cancellative semirings having com-
plexity O(|Q|2 + |E|2), whereQ is the set of states of the automaton
andE is the set of transitions. This turns out to have practical appli-
cations in speech recognition, as well as its theoretical importance.

Optimization theory: The initial impetus comes from a British
industrial mathematician, Raymond Cuninghame-Green, who set out
his theory in a series of articles, summarized in a lecture notes vol-
ume [10] in 1979, whose work is in turn based on the work from
the 1960’s by an American mathematician B. Giffler. Giffler’s re-
search appears to have been mainly military and – to a large extent –
unpublished, but he is known in optimization circles for the Giffler-
Thomson Scheduling Algorithm, which was published in the 1960’s.
Other applications studied by Cuninghame-Greene include shortest-
path problems and critical-path problems in graph theory, as well as
control theory and operations research.

In particular, Cuninghame-Green looked at the following struc-
ture: letRmax= R∪{−∞} and define operations⊕ (addition) and⊗
(multiplication) on this set as follows:a⊕b= max{a,b} anda⊗b=
a+b (where + is the usual addition inR and(−∞)+b =−∞ for all
b ∈ Rmax. Then(Rmax,⊕,⊗) is a semiring, known as thesched-
ule algebraor, sometimes, as themax-plus semiring. The neutral
element of this semiring with respect to addition is−∞ and the neu-
tral element with respect to multiplication is 0. Since every element
a in Rmax other than−∞ has an inverse with respect to multiplica-
tion, this semiring is in fact asemifield, and a surprising amount
of linear algebra carries over to “vector spaces”and “matrices”over
semifields. The dual of the schedule algebra is theoptimization al-
gebra (Rmin,⊕,⊗), whereRmin = R∪{∞}, a⊕b = min{a,b}, and
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a⊗b= a+b. This too is a semifield, which was successfully applied
to optimization problems on graphs by Gondran and Minoux [23]
and has become a standard tool in hundreds of papers on optimiza-
tion. Later, a school of Russian mathematicians, led by academi-
cian Victor P. Maslov, was to create a whole new probability theory
based on this structure, calledidempotent analysis(see, for exam-
ple, [35], [28], [12], [13]), giving interesting applications in quan-
tum physics, which have now become of interest to those computer
scientists interested in the problems of quantum computation. In
1994, an important conference on idempotent analysis and its com-
putational aspects was held at Hewlett-Packard’s research laborato-
ries in Bristol, England, under the direction of Jeremy Gunawardena
[24].

The extensive use of the schedule algebra in the study of discrete-
event dynamical systems later centered around a group of French
mathematicians at INRIA-Rocquencourt near Paris (who published
some of their work under the collective pseudonym Max Plus), and
especially in the work of Stéphane Gaubert. Much of their early
work was summarized in 1992 in [4]. Complementary work was
also done at LIAFA (Laboratoire d’Informatique Algorithmique),
an institute of Universit́e Paris VII, under the direction of Jean Eric
Pin. The work, both theoretical and applied, of both centers is part
of a more general European network of researchers known as ALA-
PEDES (ALgebraic Approach to Performance Evaluation of Dis-
crete event Systems), coordinated by Geert Jan Olsder. The ALA-
PEDES website,

http://www.cs.rug.nl/∼rein/alapedes/alapedes.html,

also contains links to various publically-available software packages
useful for working in this area.

Algebras of formal processes:A third area of application of
semirings opened up in the 1980’s due to the work of J. A. Bergstra
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and his collaborators, who defined the notion of analgebra of com-
municating processes, used to formalize the actions in a distrib-
uted computing environment. Such an algebra consists of a finite
setR of atomic actionsamong which there is a designated action
δ (= “deadlock”). On the setR we define two operations, addition
(usually calledchoice) and multiplication (usually calledcommu-
nication merge) in such a manner thatδ is the neutral element with
respect to addition and thatR, together with these operations, is a
semiring. (There is a bit of a problem here with the neutral element
with respect to multiplication, but it is easy enough to formally ad-
join one if necessary.) There is usually another operation present,
calledsequential composition, which can be considered as an op-
erator acting on this semiring. See, for example, [6]. Other process
algebras were later presented by researchers around the world, and a
whole area of research in process logic has developed over the past
two decades.

In 1969, C. A. R. Hoare introduced a formal system, now known
asHoare logic, to investigate specification and verification of well-
structured computer programs. By the 1980’s, several such systems
were introduced, and they in turn led to the definition of various
semirings were are used as a context to study program specification
and correctness. These include thedynamic algebrasandKleene
algebrasstudied by Dexter Kozen [29] and David Harel [25],Hoare
algebras[54], etc.

Generalized fuzzy computation: Bounded distributive lattices
are commutative semirings which are both additively idempotent
and multiplicatively idempotent. In particular, ifI is the unit in-
terval on the real line, then(I,max,min) is a semiring in which the
neutral element with respect to addition is 0 and the neutral element
with respect to multiplication is 1. Then, as we have already noted,
the setIA of functions fromA to I is a semiring, for any nonempty
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setA. But, following the work of Lofti Zadeh and his hordes of fol-
lowers, such functions are known asfuzzy subsetsof A, and so it
turns out that semirings are a convenient and useful algebraic frame-
work for fuzzy set theory. Indeed, it was realized quite early, by
Joseph Goguen [19] and others, that one should really work withL-
fuzzy sets, whereL is an arbitrary bounded distributive lattice. This
then leads naturally to the consideration of structures of the form
RA, whereR is an arbitrary semiring. If one also assumes thatA has
an algebraic structure, for example if it is a monoid, then we arrive
at structures known aspower algebras, to which I devoted an en-
tire book [21], which I am certainly not in a position to summarize
here. Let me just mention that by takingR to be the semiringN of
nonnegative integers, we also get, as a special case, Donald Knuth’s
theory ofmultisets and by takingR to be the setN∪{−∞,∞} with
the usual addition and multiplication suitably augmented, we get the
theory ofbags.

Another important variant on fuzzy computation is to retainR= I
and continue to define addition bya+b = max{a,b}, but to change
the definition of multiplication. It turns out that operations· sat-
isfying the condition that(I,max, ·) is a semiring are precisely the
triangular norms first defined by Menger in connection with prob-
ability theory and now finding extensive use in defining interaction
rules of economic agents in the theory of fuzzy games. In computer
science, triangular norms have been used in everything from image
processing to artificial intelligence and various multivalued logics.
Dually, the operations· satisfying the condition that(I,min, ·) is a
semiring are calledtriangular conorms and they too have found
extensive use, especially in network analysis.

In Zadeh’s theory, a functionf ∈ IA is anextent of membership
function used to define a fuzzy subset on a nonempty setA. It is
possible to go in another direction as well. Didier Dubois and Henri
Prade [15] defined a notion of atoll subsetof a nonempty setA to be
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an element ofRA, whereR is the semiring(R+∪{∞},min, ·). Here,
a function f ∈ RA is interpreted as acost of membershipfunction.
Toll sets have been used extensively to study shortest-path problems
and other network routing problems.

The discussion of fuzzy sets lead naturally to the study of fuzzy
logic and fuzzy languages, first with values inI and later with values
in an arbitrary semiring. The further transition to fuzzy computation
with values in a semiring, with the intention of studying nondeter-
minism and recursive program schemes, occurred in the work of
Wolfgang Wechler [53].

2. RECENT RESULTS

All the applications mentioned above have been, and continue to
be, extensively studied in the literature. However, in recent years
additional interesting areas of application have opened up, and it is
on those that I wish to concentrate the rest of this talk.

Combinatorial optimization: In 1993, Alexander Barvinok [5]
suggested a new approach to combinatorial optimization. To this
end, he poses the general problem of combinatorial optimization as
follows: given a positive integern and given a (generally speaking,

very large) setSof elements ofNn ⊂Rn and a vectorv =

 a1
...

an

 ∈
Rn, we want to findtv = min{v·y | y∈ S}, where· is the usual dot
product inRn. Thus, for example, in considering such problems
as the Traveling Salesman Problem,n is be the number of edges
in the given graph, the setS is the set of all possible paths (where c1

...
cn

 ∈ Smeans that there is a path in which, for each 1≤ h≤ n,
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the edgeh appearsch times), andv=

 a1
...

an

 whereah is the cost of

traversing edgeh. What Barvinok the notices is that if we consider
this calculation in the optimization algebraRmin, we see thattv =
p(a1, . . . ,an), where

p(X1, . . . ,Xn) = ∑

Xc1
1 ⊗ . . .⊗Xcn

n

∣∣∣∣∣∣∣
 c1

...
cn

 ∈ S

 .

In other words, we have reduced the problem to the evaluation of
a polynomial in several indeterminates over a semifield. This is
more than just a notational change, since one can now make use
of (appropriately-modified) algorithms for evaluation of polynomi-
als over fields in times often much faster than were available before.
For an introduction to this approach, refer to [50]. (It is significant
that these fast algorithms are also a result of research in another ap-
plication of semiring theory, calledpath algebras, especially when
it comes to the use of parallel computers. For some interesting re-
sults, refer to [49].

Baysian networks and belief propagation:Recently, the prob-
lem of calculation of maximum a posteriori log probabilities has
led Lior Pachter [41] to consider similar models with applications
in statistics. (The logarithmic part, which plays an important role
in many applications involvingRmin, comes from the existence of
a natural isomorphism of semirings(R+,max, ·) → Rmin given by
c 7→ − log(c); we will come back to this later.) Another applica-
tion, towards decoding MLSD (= “maximum likelihood sequence
detection”) codes, has been considered by Kschischang, Frey, and
Loelinger [30]. Indeed,turbo decoding, the area in which their
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work falls, has been explained in terms of Pearl’s Belief Propaga-
tion Algorithm ([43], [1]), familiar in artificial intelligence under
the name of the Junction Tree Algorithm. Also, refer to the seminal
work of Shafer and Shenoy on probability propagation [46] through
local computation of probability distributions. In Israel, work in this
area is being done primarily by Yair Weiss of the Hebrew Univer-
sity [17], [55]. The basic idea in all of this is to somehow exploit
independence relations induced by evidence to construct efficient
algorithms for probabilistic inference in Baysian networks.

This work provides a framework for a general family of algo-
rithms known as “local message passing algorithms”, which have
enjoyed considerable interest recently. The most important applica-
tion of the Belief Propagation Algorithm is to the so-called “hidden
Markov chain inference problem”, which is also the problem ad-
dressed by Pachter. Refer also to [33] and [42]. Similarly, the use of
semiring methods to find solutions to deterministic Markov decision
processes in polynomial time was considered by Littman in his 1996
thesis [31].

There are many applications of this material in digital signal process-
ing and the construction of sensor networks. For applications of this
work in constructing statistical language models, important in text-
processing and speech-processing applications, refer to the work of
Allauzen, Mohri and Roark [3] at AT&T Labs.

Algebraic geometry over the optimization algebra: As a re-
sult of the work of Barvinok, it became interesting to look at the
geometric structure ofRn

min. The foremost workers in this area are
Mike Develin, Grigory Mikhalkin, and Bernd Sturmfels. See, for
example, [14], [37], and [44]. Much of their work is based on re-
sults by members of the INRIA discrete-event dynamical systems
group [8], by the Russian idempotent-analysis group [32], and by
algebraic geometers such as Oleg Viro [52]. One of their major in-
terests is in convex polytopes in the spaceRn

min. Here, a subsetS
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of Rn
min is convex if and only if a⊗ v⊕b⊗w ∈ S whenevera,b∈

Rmin andv,w∈ Rn
min (hereRn

min is considered as a semimodule over
Rmin). Theconvex hull of a nonempty subsetD of Rn

min consists of
all linear combinations∑n

i=1ai ⊗vi of elements ofD; in particular a
convex polytopeis the convex hull of a finite subsetD of Rn

min.
Many of the standard geometric theorems hold true in this setting.

For example,

Theorem (Carathéodory’s Theorem overRmin): If ∅ 6= D⊆Rn
min

is the convex hull of a set of r points, then it is the convex hull of at
most n of them.

Theorem: Any convex polytope inRn
min is the convex hull of a

unique minimal set.

Moreover, the geometric structure inRn
min can be used to prove

results in “ordinary”algebraic geometry. For example, Mikhalkin
[38] established a formula for enumeration of curves of arbitrary
genus in toric surfaces by moving over toRn

min.
There is a problem, of course, of finding appropriate definitions.

Consider, for example, trying to define the notion of a linear sub-
space ofRn

min. The most straightforward definition of alinear sub-

spaceof Rn
min is that it is a set consisting of all solutionsv=

 v1
...

vn


of a finite set of equations of the formy·v = y′ ·v for y,y′ ∈ Rn

min. A
linear subspace defined by one such equation is ahyperplane.

Theorem (Farkas’ Lemma over Rn
min): If v ∈ Rn

min and if A is a
polytope inRn

min, then either v∈ A or v is separated from A by a
hyperplane.

Linear subspaces ofRn
min are surely convex. Note that the func-

tion v 7→ y · v is just a homomorphism ofRmin-semimodules from
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Rn
min to Rmin, so finding the linear subspaces ofRn

min is just a spe-
cial case of finding solutions of finite systems of equations of the
form mα = mβ , wherem is an element of a leftR-semimodule
M (for some semiringR) andα,β ∈ Hom(M,N) for some leftR-
semimoduleN. The problem, in this generality, is dealt with in my
recent book [22].

An alternative method would be to define a linear subspace of
Rn

min to be the convex hull of a finite nonempty set of points ofRn
min.

These two definitions do not lead to the same spaces; see [44]. Both
of these definitions have problems, however, when it comes to doing
algebraic geometry and, indeed, as we move on to more complex
geometric objects, other approaches have emerged which better fit
the geometric context, albeit often at the cost of algebraic simplicity.

Indeed, consider the following definition of an algebraic variety in
Rn

min, put forth by Sturmfels: theorder of a rational function in one
complex variable is the order of its zero or pole at the origin, namely
the smallest exponent in the numerator polynomial minus the small-
est exponent in the denominator polynomial. This definition of order
extends uniquely to the algebraic closureK of the fieldC(t) of ratio-
nal functions, since every nonzero algebraic functionp(t) ∈ K can
be locally presented as aPuiseux seriesp(t) = ∑∞

i=1citq(i), where
theci are nonzero complex numbers andq(1) < q(2) < .. . are ratio-
nal numbers with bounded denominators. Theorder of p(t) is then

q(1). Similarly, theorder of

 p1(t)
...

pn(t)

 is

 q11
...

qn1

, where eachqh1

is the order ofph(t). Thus we have a function

order : (K r{0})n →Qn ⊆ Rn.

If I is any ideal in the Laurent polynomial ringK
[
X±1

1 , . . . ,X±1
n

]
,

then I defines an affine varietyV(I) ⊆ (K r {0})n and its image
underorder is a subset ofQn. The topological closureT(I) of this
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image will be analgebraic variety in Rn
min. In particular, if the

idealI is generated by linear forms of the form∑n
i=1 pi(t)Xi , then the

algebraic variety defined byV(I) is aSturmfels linear subspaceof
Rn

min.
We should note that such varieties show up in many different con-

texts of recent research, under various names, among them “loga-
rithmic limit sets”, “Bergman fans”, “Bieri-Groves sets”, and “non-
archimedian amoebas”. They are strongly connected to the notion
of Maslov dequantization, which we will talk about shortly.

The above definition of algebraic varieties inRn
min seems, of course,

rather artificial and certainly far from the original context with which
we started. However, it offers the advantage of actually allowing
for a computational procedure for computing such varieties, which I
will not go into here.

Moreover, it is possible to give a more intuitive approach. A
monomial overRmin is an expression of the forma⊗Xc1

1 ⊗ . . .⊗Xcn
n ,

wherea ∈ Rmin and where theci are nonnegative integers. Thus,
each such monomial represents an affine function fromRn to R
given by  x1

...
xn

 7→ a+
n

∑
i=1

cixi .

A polynomial g overRmin is a finite sum of monomials
n⊕

j=1

[
a j ⊗X

c1 j

1 ⊗ . . .⊗X
cn j
n

]
.

Such a polynomial represents a function fromRn to R which is
piecewise linear and concave (since it is the minimum of a finite
number of algebraic functions). Another way of looking at this func-
tion is that it is the Legendre transform of the functionj 7→ −a j (this
function is only defined on a finite set of points, but its Legendre
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transform is defined on all ofRn). The hypersurface T(g) deter-

mined by such a polynomial is the set of all pointsx=

 x1
...

xn

 ∈Rn

at which this function is not linear, namely the set of pointsx at
which the minimum is attained by two or more of the affine func-
tions determined by the monomials. One can then show:

Theorem: If g is a polynomial overRmin then there exists a polyno-
mial f ∈ K [X1, . . . ,Xn] such that T(g) = T(I), where I is the ideal
generated by f .

An intersection of finitely-many hypersurfaces overRmin is apre-
variety overRmin. Every algebraic variety, as previously defined, is
a prevariety. The converse, however, is false.

A comprehensive introduction to this theory is given in [44], and
it is not my intention to pursue it further. The authors manage to de-
velop a version of Bezout’s Theorem for their geometry overRmin,
and go into detailed problems of construction, including computa-
tional considerations.

Dequantization and amoebas:In the 1980’s, as we already noted,
Maslov, in his work on optimization, defined the notion ofdequan-
tization of the semiring(R+,+, ·) of nonnegative real numbers [34].
For each nonnegative real numberh, he considered the semiring
Rh = (R+,⊕h, ·), where the operation⊕h is defined by:

a⊕h b =

{
max{a,b} if h = 0[
a1/h +b1/h

]h
if h > 0

.

Notice that max{a,b} = limh→0(a⊕h b). Also, we note thatR1 =
(R+,+, ·). If h > 0, then the semiringR1 is isomorphic toRh under
the mapa 7→ ah. On the other hand,R1 is not isomorphic toR0, since
addition inR0 is idempotent, whereas addition inR1 is not.
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If 1 < t ≤∞, then we also have a semiringR[t] = (R,⊕t ,+), where

a⊕t b =
{

logt(t
a + tb) if t < ∞

max{a,b} if t = ∞ .

Then the map log :Rh → R[t], wheret = e1/h, is always an isomor-
phism (here we use the notational convention that∞ = 1/0). As
it turns out, these observations are connected with a technique of
Oleg Viro in algebraic geometry known aspatchworking, which is
in turn related to the above geometric constructions overRmin. The
connection between them has been worked out by Mikhalkin, in his
theory ofamoebas[36]. Also, in this connection, refer to recent
work of Shustin [47].
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