DERIVATIONS AND SKEW POLYNOMIAL RINGS

CHEN–LIAN CHUANG

TEIPEI, TAIWAN

(WITH TSIU–KWEN LEE)

Let \(R \) be a prime ring and \(d \) a derivation of \(R \). Let \(E(R,+) \) denote the ring of additive endomorphisms of \(R \) endowed with pointwise addition and composition multiplication. Obviously, \(d \in E(R,+) \).

For \(a \in R \), let \(a_L \in E(R,+) \) denote the left multiplication \(a_L : x \in R \mapsto ax \in R \). Let \(S \) be the subring of \(E(R,+) \) generated by \(d \) and all \(a_L, a \in R \). We shall compute the prime radical and minimal prime ideals of \(S \) as follows: Let \(R[x;d] \) be the skew polynomial ring with the multiplication rule: \(xr = rx + d(r) \) for \(r \in R \). Since \(da_L = d(a)_L + a_Ld \) for \(a \in R \), the map

\[
\varphi : a_0x^n + \cdots + a_{n-1}x + a_n \mapsto (a_0)_Ld^n + \cdots + (a_{n-1})_Ld + (a_n)_L \in S
\]

is a surjective ring homomorphism. \(\varphi \). Then \(R[x;d]/\mathcal{A} \cong S \), where \(\mathcal{A} \) is the kernel of \(\varphi \). Let \(\mathcal{P} \) be the ideal of \(R[x;d] \) including \(\mathcal{A} \) such that \(\mathcal{P}/\mathcal{A} \) is the prime radical of \(R[x;d]/\mathcal{A} \). Our aim is to describe in the ring \(R[x;d] \) the ideals \(\mathcal{A}, \mathcal{P} \) and also the minimal prime ideals over \(\mathcal{A} \) in the following way: Let \(Q \) denote the symmetric Martindale quotient ring of \(R \). The center \(C \) of \(Q \) is called the extended centroid of \(R \). Let \(C^{(d)} := \{ \alpha \in C : d(\alpha) = 0 \} \). Matczuk has shown that the center of \(Q[x;d] \) assumes the form \(C^{(d)}[\zeta] \). Given \(f(\zeta) \in C[\zeta] \), we let

\[
\langle f(\zeta) \rangle := R[x;d] \cap f(\zeta)Q[x;d].
\]
We show that \mathcal{A}, \mathcal{P} and all minimal prime ideals over \mathcal{A} are of the above form and we compute these center elements $f(\zeta)$ explicitly.

Here is an application: Assume that d is a nilpotent derivation. Let m be the least integer such that $d^m(R)c = 0$ for some $0 \neq c \in R$. Let (x^m) denote the ideal of $R[x; d]$ generated by x^m. Then $(x^m) \cap R = 0$. We extend (x^m) to an ideal \mathcal{M} of $R[x; d]$ maximal with respect to the property $\mathcal{M} \cap R = 0$. The quotient ring $R[x; d]/\mathcal{M}$ is an extension of R and is called the d-extension of R. Using the above results, we show that $\mathcal{M} = \mathcal{P}$. So the d-extension of R exists uniquely and is isomorphic canonically to the quotient ring of S modulo its prime radical.