Some recent work on clean rings:

- 1. The structure of a class of clean rings
- An application of a theorem on clean endomorphism rings

by

Yiqiang Zhou

Memorial University of Newfoundland, Canada

July 15, 2011

(with Tsiu-Kwen Lee)

Clean rings

R: associative ring with 1 U(R): group of units of R J(R): Jacobson radical of R E(M): injective hull of a module M

- An element a ∈ R is clean if ∃e² = e and u ∈ U(R) such that a = e + u, and R is clean if every a ∈ R is clean. [Nicholson, 77]
- Clean rings form a proper subclass of exchange rings. [Nicholson, 77], [Camillo-Yu, 94]

(*R* is an **exchange ring** $\Leftrightarrow \forall a \in R, \exists e^2 = e \in aR$ with $1 - e \in (1 - a)R$.)

Bergman's example:

Let K be a field , A = K[[x]], Q the field of fractions of A. Define

$$R = \{r \in \mathsf{End}(A_K) : \exists q \in Q \text{ and } \exists n > 0 \text{ with} \\ r(a) = qa \text{ for all } a \in x^n A\}.$$

Then R is a regular (so exchange) ring. But if $char(K) \neq 2$, then R is not clean.

- Examples of clean rings:
 - 1. Semiperfect rings. [Camillo-Yu, 94]
 - 2. Unit-regular rings. [Camillo-Khurana, 01]
 - 3. Exchange rings whose idempotents are central. [Nicholson, 77]
 - 4. Strongly π -regular rings (i.e. for $\forall a \in R \exists n \ge 1$ such that $a^n R = a^{n+1} R$). [Burgess-Menal, 88]
 - 5. End (M_R) where M_R is either continuous or discrete or flat cotorsion. [Camillo-Khurana-Lam-Nicholson-Z, 06]
 - 6. If R is clean then $\mathbb{M}_n(R)$, $\mathbb{T}_n(R)$ and R[[t]] are all clean. But R[t] is not clean for any ring R (because t is not the sum of a unit and an idempotent).

7.

Uniquely clean rings

- An element $a \in R$ is uniquely clean if $\exists | e^2 = e$ and $\exists | u \in U(R)$ such that a = e + u, and R is called **uniquely clean** if every $a \in R$ is uniquely clean.
- Structure Theorem [Nicholson-Z, 04]
 - 1. R is local, uniquely clean iff $R/J(R) \cong \mathbb{Z}_2$.
 - 2. R is semiprimitive, uniquely clean iff R is Boolean.
 - 3. *R* is uniquely clean iff R/J(R) is Boolean, idempotents of *R* are central, and idempotents lift modulo J(R).

• Motivated question:

Establish the structure for a larger class of clean rings including uniquely clean rings.

Generalizations of Boolean rings

- For a prime p, a p-ring is a ring R in which a^p = a and pa = 0 for all a ∈ R.
 R is a p-ring iff it is a subdirect product of fields of order p. [N.H.McCoy D.Montgomery, 37]
- For a prime p and a positive integer k, a p^k-ring is a ring R in which a^{p^k} = a and pa = 0 for all a ∈ R.
 A p^k-ring is isomorphic to the ring of continuous functions (with an extra condition) from a locally compact zero-dimensional space to the Galois field of p^k elements. [R.Arens I.Kaplansky, 48]
- For a positive integer n, a J(n)-ring is a ring R such that aⁿ⁺¹ = a for all a ∈ R. A ring R is called a J-ring if R is a J(n)-ring for some n ≥ 1.

R is a $J\operatorname{-ring}$ iff it is the direct sum of finitely many $p^k\operatorname{-rings.}$ [J.Luh, 67]

• A ring R is **periodic** if for each $a \in R$ there is a positive integer n(a) such that $a^{n(a)+1} = a$.

R is periodic iff it is the union of a countable ascending chain $\{R_i\}$ of J-rings such that every Jring contained in R is contained in some R_i . [T.Chinburg - M.Henriksen, 76]

Structure Theorems

- Let n > 0. A ring R is called **uniquely** n-clean if a^n is uniquely clean for every $a \in R$. The ring R is called **uniquely** π -clean if for each $a \in R$ there exists a positive integer n(a) such that $a^{n(a)}$ is uniquely clean.
- R is uniquely π -clean iff R/J(R) is a periodic ring, idempotents of R are central and idempotents lift modulo J(R).
- R is uniquely n-clean iff R/J(R) is a J(n)-ring, idempotents of R are central and idempotents lift modulo J(R).

```
Letting n = 1 yields
```

```
Coro. [Nicholson-Z, 04] R is uniquely clean iff R/J(R) is Boolean, idempotents of R are central, and idempotents lift modulo J(R).
```

- Some arguments of the Proof:
 - 1. If a^n is strongly clean for some $n \ge 1$, then a is strongly clean. (a^n clean $\stackrel{?}{\Rightarrow} a$ clean)
 - 2. For $e^2 = e \in R$, e is uniquely clean iff e is central.
 - 3. Let R be a uniquely π -clean ring. Then $u \in U(R)$ is uniquely clean iff $1 u \in J(R)$.

Structure Theorems (continued)

- A ring R is a uniquely π -clean iff R is the union of a countable ascending chain $\{R_i\}$ of subrings where, for each i, $R_i \supseteq J(R)$ is a uniquely n_i -clean ring for some $n_i \ge 1$ such that any uniquely n-clean ring contained in R is contained in some R_i .
- TFAE for a ring R:
 - 1. R is a uniquely n-clean ring for some $n \ge 1$.
 - 2. $R = R_1 \oplus \cdots \oplus R_s$, where R_i is a uniquely $(p_i^{k_i} 1)$ clean ring and $p_i R_i \subseteq J(R_i)$ with p_i a prime and $k_i \ge 1$ for i = 1, ..., s.

Examples

- Let R be a local ring and $n \ge 1$. Then R is uniquely n-clean iff $R/J(R) \cong GF(p^k)$ where p is a prime and $k \ge 1$ such that $(p^k 1) \mid n$ and where $GF(p^k)$ denotes the Galois field of p^k elements.
- Let σ be an endomorphism of R and $n \ge 1$. Then $R[[x; \sigma]]$ is uniquely *n*-clean (resp., uniquely π -clean) iff R is uniquely *n*-clean (resp., uniquely π -clean) and $\sigma(e) = e$ for all $e^2 = e \in R$.
- Let n, m be positive integers. Then R is uniquely n-clean (resp., uniquely π -clean) iff $R[x]/(x^m)$ is uniquely n-clean (resp., uniquely π -clean).
- Every factor ring of a uniquely *n*-clean (resp. uniquely π -clean) ring is uniquely *n*-clean (resp. uniquely π -clean).

Examples as group rings

- Let R be a ring, G a group, p a prime and $k \ge 1$. Then the following hold:
 - 1. If RG is uniquely $(p^k 1)$ -clean, then R is uniquely $(p^k - 1)$ -clean and, for any $g \in G$, $o(g) = p^s q$ where $s \ge 0$ and $q \mid (p^k - 1)$.
 - 2. If R is uniquely (p^k-1) -clean and G is a locally finite p-group, then RG is uniquely (p^k-1) -clean.

Letting p = 2 and k = 1 yields

Coro. [Chen-Nicholson-Z, 06] If the group ring RG is uniquely clean, then R is a uniquely clean ring and G is a 2-group. The converse holds if G is locally finite.

Coro. Let R be a ring and let G be an abelian group. Then RG is uniquely 2-clean iff R is uniquely 2-clean and G is the direct product of a 3-group and an elementary 2-group.

Conditions on a module M

- *M* is **CS** if it satisfies
 - (C_1) Every submodule of M is essential in a summand of M.
- M is **continuous** if it satisfies (C_1) and
 - (C_2) Every submodule of M that is isomorphic to a summand of M is itself a summand of M.
- M is **quasi-continuous** if it satisfies (C_1) and
 - (C₃) If A, B are summands of M with $A \cap B = 0$, then $A \oplus B$ is also a summand of M.
- *M* is **quasi-injective** if every homomorphism from any submodule of *M* to *M* extends to an endomorphism of *M*.
- Quasi-injective \Rightarrow continuous \Rightarrow quasi-continuous \Rightarrow CS; none of the arrows is reversible.

A consequence of

Theorem. If M_R is a continuous module, then $End(M_R)$ is a clean ring. [Camillo-Khurana-Lam-Nicholson-Z, 06]

- M is quasi-injective $\Leftrightarrow \sigma M \subseteq M$, $\forall \sigma \in \text{End}(E(M)_R)$. [R.E. Johnson - E.T. Wong, 61]
- M is quasi-injective $\Leftrightarrow \sigma M \subseteq M$, $\forall \sigma^2 = \sigma \in \text{End}(E(M)_R)$ and $\forall \sigma \in \text{Aut}(E(M)_R)$. (by the theorem)
- M is quasi-continuous $\Leftrightarrow \sigma M \subseteq M$, $\forall \sigma^2 = \sigma \in \text{End}(E(M)_R)$. [L. Jeremy, 74]
- ??? $\Leftrightarrow \sigma M \subseteq M$, $\forall \sigma \in Aut(E(M)_R)$.

Automorphism-invariant modules

- A module M is called an **automorphism-invariant module** (or auto-invariant module) if $\sigma M \subseteq M$ for every automorphism σ of E(M).
- quasi-injective = auto-invariant + quasi-continuous
- Examples of auto-invariant modules:

quasi-injective modules and, more generally, pseudoinjective modules.

M is **pseudo-injective** if every monomorphism from a submodule of M to M extends to an endomorphism of M. [S. Singh - S.K. Jain, 67]

A characterization

- TFAE for a module M:
 - 1. M is an auto-invariant module.
 - 2. Every isomorphism between two essential submodules of M extends to an endomorphism of M.
 - 3. Every isomorphism between two essential submodules of M extends to an automorphism of M.

Direct sums

- M₁ ⊕ M₂ is quasi-continuous iff each summand is quasi-continuous and M₁, M₂ are relatively injective. [Müller-Rizvi, 83]
- If $M_1 \oplus M_2$ is auto-invariant, then each summand is auto-invariant and M_1, M_2 are relatively injective.

Coro. M is quasi-injective iff $M \oplus M$ is auto-invariant.

Coro. R is semisimple Artinian iff every 2-generated R-module is auto-invariant.

Coro. [Dinh, 05] If $M_1 \oplus M_2$ is pseudo-injective, then M_1, M_2 are relatively injective.

Dinh's question

 Every pseudo-injective module satisfies (C₂), so every pseudo-injective CS module is continuous.
 [Dinh, 05]

Dinh's question: Is a pseudo-injective $CS \mod Q$ module quasi-injective?

- M is quasi-injective iff M is pseudo-injective and $M \oplus M$ is CS. [Alahmadi, Er and Jain, 05]
- M is quasi-injective iff M is pseudo-injective and M is CS. [Ganesan-Vanaja,07]

Proof.

Quasi-injective \Rightarrow pseudo-injective + CS

- \Rightarrow pseudo-injective + quasi-continuous
 - (by Dinh's theorem)
- \Rightarrow auto-invariant+quasi-continuous
- =quasi-injective
 - (by our observation)

Auto-invariant + CS = quasi-injective

• Every auto-invariant module satisfies (C_3) .

Proof. Let *M* be an auto-invariant module. Assume that *A*, *B* are two summands of *M* such that $A \cap B = 0$. We need to show that $A \oplus B$ is a summand of *M*. Write $M = A \oplus A'$, and let $\pi : M \to A'$ be the canonical projection. Let *C* be a submodule of *M* such that $(A+B)\cap C = 0$ and $A \oplus B \oplus C \leq_e M$. Write $D := B \oplus C$. Then $A \oplus D = A \oplus \pi D$, and $\pi|_D : D \to \pi D$ is an isomorphism. Thus $1_A \oplus \pi|_D : A \oplus D \to A \oplus \pi D$ is an isomorphism. Since *M* is auto-invariant and $A \oplus D$ is essential in *M*, $1_A \oplus \pi|_D$ extends to an automorphism σ of *M*. Since *B* is a summand of *M*, $\pi B = \sigma B$ is a summand of *M* and so πB is a summand of *M'*.

M is quasi-injective iff it is auto-invariant CS.
 Proof.

Quasi-injective =auto-invariant+quasi-continuous (by our observation) =auto-invariant + CS (by the result above)

Over a semiprime right Goldie ring

- Over a semiprime right Goldie ring, every nonsingular quasi-injective module is injective. [Boyle-Goodearl, 75]
- Over a prime right Goldie ring, every nonsingular pseudo-injective module is injective. [Jain-Singh, 75]
- Over a semiprime right Goldie ring, every nonsingular auto-invariant module is injective.

Questions and remarks

Any decomposition of an auto-invariant module? When is a direct sum of modules auto-invariant? The endomorphism ring of an auto-invariant module? A ring Ris a right QI-ring if every quasi-injective right R-module is injective. Which rings R have the property that every auto-invariant right R-module is injective?

THANK YOU