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Clean rings

R : associative ring with 1
U(R): group of units of R
J(R): Jacobson radical of R
E(M): injective hull of a module M

• An element a ∈ R is clean if ∃e2 = e and u ∈ U(R)
such that a = e+ u , and R is clean if every a ∈ R
is clean. [Nicholson, 77]

• Clean rings form a proper subclass of exchange
rings. [Nicholson, 77], [Camillo-Yu, 94]

(R is an exchange ring ⇔ ∀a ∈ R, ∃e2 = e ∈ aR
with 1− e ∈ (1− a)R .)

Bergman’s example:

Let K be a field , A = K[[x]] , Q the field of frac-
tions of A . Define

R = {r ∈ End(AK) :∃q ∈ Q and ∃n > 0 with

r(a) = qa for all a ∈ xnA}.

Then R is a regular (so exchange) ring. But if
char(K) 6= 2, then R is not clean.



• Examples of clean rings:

1. Semiperfect rings. [Camillo-Yu, 94]

2. Unit-regular rings. [Camillo-Khurana, 01]

3. Exchange rings whose idempotents are central.
[Nicholson, 77]

4. Strongly π -regular rings (i.e. for ∀a ∈ R ∃n ≥ 1
such that anR = an+1R). [Burgess-Menal, 88]

5. End(MR) where MR is either continuous or
discrete or flat cotorsion.
[Camillo-Khurana-Lam-Nicholson-Z, 06]

6. If R is clean then Mn(R), Tn(R) and R[[t]] are
all clean. But R[t] is not clean for any ring
R (because t is not the sum of a unit and an
idempotent).

7. ......



Uniquely clean rings

• An element a ∈ R is uniquely clean if ∃|e2 = e and
∃|u ∈ U(R) such that a = e + u , and R is called
uniquely clean if every a ∈ R is uniquely clean.

• Structure Theorem [Nicholson-Z, 04]

1. R is local, uniquely clean iff R/J(R) ∼= Z2 .

2. R is semiprimitive, uniquely clean iff R is Boolean.

3. R is uniquely clean iff R/J(R) is Boolean, idem-
potents of R are central, and idempotents lift
modulo J(R).

• Motivated question:

Establish the structure for a larger class of clean
rings including uniquely clean rings.



Generalizations of Boolean rings

• For a prime p , a p-ring is a ring R in which ap = a
and pa = 0 for all a ∈ R .

R is a p-ring iff it is a subdirect product of fields
of order p . [N.H.McCoy - D.Montgomery, 37]

• For a prime p and a positive integer k , a pk -ring is
a ring R in which ap

k

= a and pa = 0 for all a ∈ R .

A pk -ring is isomorphic to the ring of continuous
functions (with an extra condition) from a locally
compact zero-dimensional space to the Galois field
of pk elements. [R.Arens - I.Kaplansky, 48]

• For a positive integer n , a J(n)-ring is a ring R
such that an+1 = a for all a ∈ R . A ring R is called
a J -ring if R is a J(n)-ring for some n ≥ 1.

R is a J -ring iff it is the direct sum of finitely many
pk -rings. [J.Luh, 67]

• A ring R is periodic if for each a ∈ R there is a
positive integer n(a) such that an(a)+1 = a .

R is periodic iff it is the union of a countable as-
cending chain {Ri} of J -rings such that every J -
ring contained in R is contained in some Ri .
[T.Chinburg - M.Henriksen, 76]



Structure Theorems

• Let n > 0. A ring R is called uniquely n-clean
if an is uniquely clean for every a ∈ R . The ring
R is called uniquely π -clean if for each a ∈ R
there exists a positive integer n(a) such that an(a)

is uniquely clean.

• R is uniquely π -clean iff R/J(R) is a periodic ring,
idempotents of R are central and idempotents lift
modulo J(R).

• R is uniquely n-clean iff R/J(R) is a J(n)-ring,
idempotents of R are central and idempotents lift
modulo J(R).

Letting n = 1 yields

Coro. [Nicholson-Z, 04] R is uniquely clean iff
R/J(R) is Boolean, idempotents of R are central,
and idempotents lift modulo J(R).

• Some arguments of the Proof:

1. If an is strongly clean for some n ≥ 1, then a
is strongly clean.

(an clean
?⇒ a clean)

2. For e2 = e ∈ R , e is uniquely clean iff e is
central.

3. Let R be a uniquely π -clean ring. Then u ∈
U(R) is uniquely clean iff 1− u ∈ J(R).



Structure Theorems (continued)

• A ring R is a uniquely π -clean iff R is the union of a
countable ascending chain {Ri} of subrings where,
for each i , Ri ⊇ J(R) is a uniquely ni -clean ring for
some ni ≥ 1 such that any uniquely n-clean ring
contained in R is contained in some Ri .

• TFAE for a ring R :

1. R is a uniquely n-clean ring for some n ≥ 1.

2. R = R1⊕· · ·⊕Rs , where Ri is a uniquely (pkii −1)-
clean ring and piRi ⊆ J(Ri) with pi a prime and
ki ≥ 1 for i = 1, . . . , s .



Examples

• Let R be a local ring and n ≥ 1. Then R is uniquely
n-clean iff R/J(R) ∼= GF (pk) where p is a prime
and k ≥ 1 such that (pk− 1) | n and where GF (pk)
denotes the Galois field of pk elements.

• Let σ be an endomorphism of R and n ≥ 1. Then
R[[x;σ]] is uniquely n-clean (resp., uniquely π -clean)
iff R is uniquely n-clean (resp., uniquely π -clean)
and σ(e) = e for all e2 = e ∈ R .

• Let n,m be positive integers. Then R is uniquely
n-clean (resp., uniquely π -clean) iff R[x]/(xm) is
uniquely n-clean (resp., uniquely π -clean).

• Every factor ring of a uniquely n-clean (resp. uniquely
π -clean) ring is uniquely n-clean (resp. uniquely π -
clean).



Examples as group rings

• Let R be a ring, G a group, p a prime and k ≥ 1.
Then the following hold:

1. If RG is uniquely (pk − 1)-clean, then R is
uniquely (pk − 1)-clean and, for any g ∈ G ,
o(g) = psq where s ≥ 0 and q | (pk − 1).

2. If R is uniquely (pk−1)-clean and G is a locally
finite p-group, then RG is uniquely (pk − 1)-
clean.

Letting p = 2 and k = 1 yields

Coro. [Chen-Nicholson-Z, 06] If the group ring RG
is uniquely clean, then R is a uniquely clean ring and
G is a 2-group. The converse holds if G is locally
finite.

Coro. Let R be a ring and let G be an abelian
group. Then RG is uniquely 2-clean iff R is uniquely
2-clean and G is the direct product of a 3-group
and an elementary 2-group.



Conditions on a module M

• M is CS if it satisfies

(C1) Every submodule of M is essential in a
summand of M .

• M is continuous if it satisfies (C1) and

(C2) Every submodule of M that is isomorphic to
a summand of M is itself a summand of M .

• M is quasi-continuous if it satisfies (C1) and

(C3) If A,B are summands of M with A ∩B = 0,
then A⊕B is also a summand of M .

• M is quasi-injective if every homomorphism from
any submodule of M to M extends to an endomor-
phism of M .

• Quasi-injective ⇒ continuous ⇒ quasi-continuous
⇒ CS; none of the arrows is reversible.



A consequence of

Theorem. If MR is a continuous module, then End(MR)
is a clean ring. [Camillo-Khurana-Lam-Nicholson-Z, 06]

• M is quasi-injective ⇔ σM ⊆M , ∀σ ∈ End(E(M)R).
[R.E. Johnson - E.T. Wong, 61]

• M is quasi-injective ⇔ σM ⊆M , ∀σ2 = σ ∈ End(E(M)R)
and ∀σ ∈ Aut(E(M)R). (by the theorem)

• M is quasi-continuous ⇔ σM ⊆ M , ∀σ2 = σ ∈
End(E(M)R). [L. Jeremy, 74]

• ??? ⇔ σM ⊆M , ∀σ ∈ Aut(E(M)R).



Automorphism-invariant modules

• A module M is called an automorphism-invariant
module (or auto-invariant module) if σM ⊆M for
every automorphism σ of E(M).

• quasi-injective = auto-invariant + quasi-continuous

• Examples of auto-invariant modules:

quasi-injective modules and, more generally, pseudo-
injective modules.

M is pseudo-injective if every monomorphism from
a submodule of M to M extends to an endomor-
phism of M .
[S. Singh - S.K. Jain, 67]



A characterization

• TFAE for a module M :

1. M is an auto-invariant module.

2. Every isomorphism between two essential
submodules of M extends to an endomorphism
of M .

3. Every isomorphism between two essential
submodules of M extends to an automorphism
of M .



Direct sums

• M1 ⊕M2 is quasi-continuous iff each summand is
quasi-continuous and M1,M2 are relatively
injective. [Müller-Rizvi, 83]

• If M1⊕M2 is auto-invariant, then each summand is
auto-invariant and M1,M2 are relatively injective.

Coro. M is quasi-injective iff M ⊕ M is auto-
invariant.

Coro. R is semisimple Artinian iff every 2-generated
R -module is auto-invariant.

Coro. [Dinh, 05] If M1 ⊕M2 is pseudo-injective,
then M1,M2 are relatively injective.



Dinh’s question

• Every pseudo-injective module satisfies (C2),
so every pseudo-injective CS module is continuous.
[Dinh, 05]

Dinh’s question: Is a pseudo-injective CS module
quasi-injective?

• M is quasi-injective iff M is pseudo-injective and
M ⊕M is CS . [Alahmadi, Er and Jain, 05]

• M is quasi-injective iff M is pseudo-injective and
M is CS . [Ganesan-Vanaja,07]

Proof.

Quasi-injective⇒pseudo-injective + CS

⇒pseudo-injective + quasi-continuous

(by Dinh’s theorem)

⇒auto-invariant+quasi-continuous

=quasi-injective

(by our observation)



Auto-invariant + CS = quasi-injective

• Every auto-invariant module satisfies (C3).

Proof. Let M be an auto-invariant module. As-
sume that A,B are two summands of M such that
A ∩B = 0. We need to show that A⊕B is a sum-
mand of M . Write M = A⊕A′ , and let π : M → A′

be the canonical projection. Let C be a submodule
of M such that (A+B)∩C = 0 and A⊕B⊕C ≤e M .
Write D := B ⊕ C . Then A ⊕ D = A ⊕ πD , and
π|D : D → πD is an isomorphism. Thus 1A ⊕ π|D :
A ⊕ D → A ⊕ πD is an isomorphism. Since M is
auto-invariant and A⊕D is essential in M , 1A⊕π|D
extends to an automorphism σ of M . Since B is a
summand of M , πB = σB is a summand of M and
so πB is a summand of A′ . Hence A⊕B = A⊕πB
is a summand of M .

• M is quasi-injective iff it is auto-invariant CS.

Proof.

Quasi-injective =auto-invariant+quasi-continuous

(by our observation)

=auto-invariant + CS

(by the result above)



Over a semiprime right Goldie ring

• Over a semiprime right Goldie ring, every
nonsingular quasi-injective module is injective.
[Boyle-Goodearl, 75]

• Over a prime right Goldie ring, every nonsingular
pseudo-injective module is injective.
[Jain-Singh, 75]

• Over a semiprime right Goldie ring, every nonsin-
gular auto-invariant module is injective.



Questions and remarks

Any decomposition of an auto-invariant module? When

is a direct sum of modules auto-invariant? The endo-

morphism ring of an auto-invariant module? A ring R

is a right QI-ring if every quasi-injective right R -module

is injective. Which rings R have the property that every

auto-invariant right R -module is injective? ....
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