A Matrix Representation of an Azumaya Group Ring

George Szeto and Lianyong Xue Department of Mathematics Bradley University Peoria, Illinois 61625, U.S.A. Email: szeto@bradley.edu and lxue@bradley.edu

Abstract

Let R be an indecomposable ring with 1 of characteristic p^k for some prime integer p and integer k, G a group, and RG a group ring of G over R. It is shown that if RG is an Azumaya algebra, then RG contains a direct sum of matrix rings over Azumaya algebras, and RG is a direct sum of matrix rings over Azumaya algebras if and only if the center of RCG' is C where C is the center of RG and G' is the commutator subgroup of G.

(I) Definitions and Notations

- (1) Let *B* be a ring with 1 and *A* a subring of *B* with the same identity 1. Then *B* is called a <u>separable extension</u> of *A* if there exist $\{a_i, b_i$ in *B*, i = 1, 2, ..., m for some integer *m* $\}$ such that $\sum a_i b_i = 1$, and $\sum xa_i \otimes b_i = \sum a_i \otimes b_i x$ for all *x* in *B* where \otimes is over *A*.
- (2) Let C be the center of B. If B is a separable extension over C, then B is called an Azumaya C-algebra.
- (3) A split Azumaya *C*-algebra *B* is an Azumaya *C*-algebra such that $B \cong Hom_C(P, P)$ where *P* is a progenerator of *C*.

For more about separable algebras and Azumaya algebras, see [1].

(II) Introduction

(1) <u>**Theorem 1**</u> ([7])

If R is a ring of p-adic integers and G a semidirect product of a finite abelian p-group and a finite cyclic group of order not divisible by p, then RG is a direct sum of matrix rings over commutative rings.

(2) **<u>Theorem 2</u>** ([2]) (A generalization of Theorem 1)

Let RG be an Azumaya group algebra, R a complete local ring with residue field of characteristic p. Then RG is a direct sum of matrix rings over commutative rings if and only if G is a semidirect product of an abelian p-Sylow subgroup with a normal p-complement.

- (3) <u>Theorem 3</u> ([5]) (The general Brauer splitting theorem) Let R be an indecomposable commutative ring with 1, G a group of order n invertible in R for some integer n, and θ a primitive n^{th} root of 1. Then $(R[\theta])G$ is a splitting Azumaya group algebra.
- (4) Theorem 4 ([2]) (A characterization of an Azumay group ring) Let R be a ring with 1, G a group, and RG a group ring of G over R. Then RG is an Azumaya algebra if and only if (1) R is an Azumaya algebra, (2) the center of G has a finite index, and (3) the order of the commutator subgroup G' of G is a finite integer and invertible in R.

(III) Main Results

We shall give an equivalent condition under which an Azumaya group ring RG is a direct sum of matrix rings over Azumaya algebras, where R is an indecomposable ring of characteristic p^k for some prime integer p and an integer k.

We shall employ the general Wedderburn theorem ([3], Corollary 1).

Proposition 3.1.

Let A be an Azumaya algebra over an indecomposable semi-local ring C. Then $A \cong M_n(D)$, a matrix ring of order n for some integer n over an indecomposable Azumaya algebra D unique up to isomorphism.

Lemma 3.2.

Let R be an indecomposable ring of characteristic p^k , G a group, and G' the commutator subgroup of G. If RG is an Azumaya algebra over its center C, then RG' is a finite direct sum of matrix rings $M_{n_i}(E_i)$ of order n_i for some integer n_i over an Azumaya algebra E_i .

Proof. (Outline)

Char $(R) = p^k \Longrightarrow$, the prime ring of R_0 of $R \cong Z/Zp^k$. RG is an Azumaya C-algebra $\Longrightarrow |G'|$ is finite and invertible in R $\Longrightarrow R_0G'$ is separable group algebra. Let C_0 be the center of R_0G' . Then C_0G is an Azumaya C_0 -algebra and C_0 is a finite direct sum of indecomposable semi-local rings, i.e., $C_0 \cong \bigoplus \sum_{i=1}^l C_0e_i$ where $\{e_i\}$ are minimal idempotents of $C_0 \Longrightarrow$ $RG' \cong R \otimes_{R_0} R_0G' \cong R \otimes_{R_0} (\bigoplus \sum_{i=1}^l R_0e_iG')$ $\cong \bigoplus \sum_{i=1}^l (R \otimes_{R_0} M_{n_i}(D_i)) \cong \bigoplus \sum_{i=1}^l M_{n_i}(R \otimes_{R_0} D_i)$ by Proposition 3.1. RG is Azumaya \Longrightarrow so is $R \Longrightarrow$ so is $R \otimes_{R_0} D_i$. Let $E_i = R \otimes_{R_0} D_i$ by E_i . Then $RG' \cong \bigoplus \sum_{i=1}^l M_{n_i}(E_i)$. **Proposition 3.3.** (The commutator theorem for Azumaya algebras)

Let A be an Azumaya algebra and B a separable subalgebra of A. Then the commutator subalgebra A^B of B in A is also a separable subalgebra of A such that $B \otimes_{C'} A^B \cong B \cdot A^B$ where C' is the center B. In particular, if C = C', then $B \otimes_C A^B \cong B \cdot A^B = A$

Theorem 3.4.

Let RG be given in Lemma 3.2. Then RG contains a separable subalgebra $(RG')(R_0G)^{G'} \cong \bigoplus \sum M_{n_i}(E_i \otimes_{C'} (R_0G)^{G'})$ where C' is the center of E_i .

Proof. This a consequence of Lemma 3.2 and Proposition 3.3.

Theorem 3.5.

Let RG be given in Theorem 3.4. Then the following are equivalent: (1) $RG \cong \bigoplus \sum_{i} M_{n_i}(E_i \otimes_{C'} (R_0 G)^{G'});$ (2) C = the center of RCG'; (3) $C' \subset C$ where C' is the center of E_i (= the center of RG').

Proof. (1) \iff (2) By Theorem 3.4, RG' is an Azumaya algebra over C'and RCG' is a separable subalgebra of RG over C, so the center C'' of RCG' is C'C; that is, C'' = C'C. Thus, by the commutator theorem for Azumaya algebras, $RG \cong \bigoplus \sum_i M_{n_i}(E_i \otimes_{C'} (R_0G)^{G'})$ if and only if $C' \subset C$.

 $(2) \iff (3)$ is clear.

Let RG be an Azumaya group algebra over an indecomposable commutative ring R of characteristic p^k . We shall show (1) $(R[\theta])G'$ is a direct sum of matrix rings over commutative ring where θ is a primitive m^{th} root of 1 and m is the order of G', and (2) If $(RG)^{G'}$ is a direct sum of matrix rings over commutative rings, then so is $(R[\theta])G$.

Lemma 4.1.

Let R be a commutative indecomposable ring, G a finite group of order n invertible in R. Then $(R[\theta])G \cong \bigoplus \sum_{i=1}^{l} M_{n_i}(R[\theta])$ for some integer l where θ is a primitive n^{th} root of 1.

Theorem 4.2.

Let R be a commutative indecomposable ring of characteristic p^k . Assume RG is an Azumaya algebra. If $((R[\theta])G)^{G'}$ is a direct sum of matrix rings over commutative rings and C = the center of $(R[\theta]C)G'$, then $(R[\theta])G$ is a direct sum of matrix rings over commutative rings.

Theorem 4.3.

Let R be a commutative indecomposable ring of characteristic p^k . Assume RG is an Azumaya algebra. Then $(R[\theta])G$ is a splitting Azumaya algebra if and only if so is $(R[\theta]G)^{G'}$.

References

- F.R. DeMeyer and E. Ingraham, Separable Algebras over Commutative Rings, Volume 181, Springer Verlag, Berlin, Heidelberg, New York, 1971.
- [2] F.R. DeMeyer and G.J. Janusz, Group Rings which are Azumaya Algebras, Trans. Amer. Math. Soc. 279(1) (1983), 389-395.
- [3] F.R. DeMeyer Projective Modules over Central Separable Algebras, Canadian J. Math., 21 (1969) 117-127.
- [4] K. Hirata, On *H*-separability of group rings, *Tsukuba J. Math.*, 10(2) (1986) 327-329.
- [5] G. Szeto, On the Brauer splitting theorem, *Pac, J. Math.*, **31** (1970), 505-512.
- [6] G. Szeto and L. Xue, Characterizations of Azumaya Group Rings International Mathematical Forum, 5(7) (2010), 313-317.
- [7] C.T.C. Wall, Norms of Units in Group Rings, Proc. London Math. Soc., 29(3) (1974), 593-632.