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1. Right Essential Overrings

1.1. Let R be a ring and S be an overring of R. Then S is called a right

essential overring of R if RR is essential in SR.

1.2. Let R be a ring and S be an overring of R. Then S is called a right ring

of quotients of R if RR is dense in SR.

1.3. S: a right ring of quotients of a ring R ⇒ S: a right essential overring of R.

If R is right nonsingular and S is a right essential overring of R, then S is a right

ring of quotients of R.

Example 1.4. There exists a right essential overring T of a ring R, which is not

a right ring of quotients of R. Take

R =

[
Z4 2Z4

0 Z4

]
and

T =

[
Z4 Z4

0 Z4

]
.

Then (T,+, ◦), where + is the usual addition and ◦ is the usual multiplication, is a

right essential overring of R, but (T,+, ◦) is not a right ring of quotients of R.

1.5. If (T,+, ◦) and (T,+, •) are right ring of quotients of R, then ◦ = •.



Example 1.6. But 1.5 does not hold true for the case of right essential overrings.

In fact, let

R =

[
Z4 2Z4

0 Z4

]
and

T =

[
Z4 Z4

0 Z4

]
.

Then RR ≤ess TR. The addition on T is the usual addition.

Key Idea: (i) If T is a right essential overring of R, then 1T = 1R.

(ii) Thus 1T = 1R = e1 + e2, where

e1 =

[
1 0
0 0

]
and e2 =

[
0 0
0 1

]
.

Also, e1 = e2
1, e2 = e2

2, and e1e2 = e2e1 = 0.

(iii) T = e1Te1 + e1Te2 + e2Te1 + e2Te2 and compute

e1Te1, e1Te2, e2Te1 and e2Te2.

Assume that T has a compatible ring structure. Put A = Z4. By direct

computation,

(1) e1Te1 =

[
A 0
0 0

]
, (2) e2Te1 = 0, and (3) e2Te2 =

[
0 0
0 A

]
.

(4) e1Te2 =

[
0 A
0 0

]
or e1Te2 =

{
0,

[
0 1
0 2

]
,

[
0 2
0 0

]
,

[
0 3
0 2

]}
.



By (1), (2), (3), and (4), we get the following Cases 1 and 2.

Case 1. e1Te1 =

[
A 0
0 0

]
, e1Te2 =

[
0 A
0 0

]
, e2Te1 = 0, and

e2Te2 =

[
0 0
0 A

]
.

In this case,

[
1 0
0 0

] [
0 1
0 0

]
=

[
0 1
0 0

]
since e1 ∈ e1Te1

and

[
0 1
0 0

]
∈ e1Te2.

Also

[
0 1
0 0

] [
0 1
0 0

]
∈ e1Te2 e1Te2 = 0 and

[
0 0
0 1

] [
0 1
0 0

]
∈ e2 e1Te2 = 0.

So there exists a multiplication on T such that T has a compatible ring structure

under this multiplication �1 given by[
a1 b1
0 c1

]
�1
[
a2 b2
0 c2

]
=

[
a1a2 a1b2 + b1c2

0 c1c2

]
.

We remark that the ring (T,+, �1) is the 2×2 upper triangular matrix ring T2(A)

over the ring A.



Case 2. e1Te1 =

[
A 0
0 0

]
, e1Te2 =

{
0,

[
0 1
0 2

]
,

[
0 2
0 0

]
,

[
0 3
0 2

]}
,

e2Te1 = 0, and e2Te2 =

[
0 0
0 A

]
.

In this case, there is another compatible ring structure on T as shown in the

next steps.

Step 1.

[
1 0
0 0

] [
0 1
0 0

]
=

[
0 1
0 2

]
.

Note that

[
1 0
0 0

] [
0 1
0 2

]
=

[
0 1
0 2

]
since

[
0 1
0 2

]
∈ e1Te2 and e1 =

[
1 0
0 0

]
.

So[
0 1
0 2

]
=

[
1 0
0 0

] [
0 1
0 2

]
=

[
1 0
0 0

] [
0 1
0 0

]
+

[
1 0
0 0

] [
0 0
0 2

]
=

[
1 0
0 0

] [
0 1
0 0

]

because

[
1 0
0 0

] [
0 0
0 2

]
∈ e1e2Te2 = 0.

Step 2.

[
0 0
0 1

] [
0 1
0 0

]
=

[
0 0
0 2

]
.

Step 3.

[
0 1
0 0

] [
0 1
0 0

]
=

[
0 2
0 0

]
.

Step 4.

[
0 1
0 0

] [
0 0
0 1

]
=

[
0 1
0 0

]
.

By Steps 1, 2, 3, and 4 of Case 2, there is also a multiplication �2 on T such that



T has a compatible ring structure under this multiplication:[
a1 b1
0 c1

]
�2
[
a2 b2
0 c2

]
=

[
a1a2 a1b2 + 2b1b2 + b1c2

0 c1c2 + 2a1b2 + 2c1b2

]
.

Then (T,+, �1) and (T,+, �2) are all possible compatible ring structures on T.

Define f : (T,+, �1)→ (T,+, �2) by

f

[
a b
0 c

]
=

[
a b
0 2b+ c

]
.

Then f is a ring isomorphism. So, (T,+, �1) ∼= (T,+, �2).



Theorem 1.7. (Birkenmeier, Osofsky, Park, and Rizvi) Let A be a local

commutative QF-ring (self-injective artinian) with J(A) 6= 0. Let

R =

[
A A/J(A)
0 A/J(A)

]
.

Then

(i) R = Q(R).

(ii) E(RR) has |Soc(A)|2 distinct ring structures which are right essential

overrings of R.

(iii) All these rings are QF and mutually isomorphic.



1.8. We can construct a ring R for which every injective hull of RR has infinitely

many distinct compatible ring structures and these are isomorphic and QF-rings.

Let F be an infinite field and

R =

[
Λ Λ/J(Λ)
0 Λ/J(Λ)

]
,

where Λ is the ring in (i) and (ii) below. Then E(RR) of RR has |F | distinct

compatible ring structures. These compatible ring structures on E(RR) are

isomorphic and QF.

(i) Λ = F [x]/f(x)F [x], where f(x) 6= 0 is not square free by an irreducible

polynomial.

(ii) Λ = F [G] is the group algebra, where the characteristic of F is p > 0, p

a prime integer, and G is a finite abelian group such that p | |G|.



2. An Example of Osofsky

2.1. A module M is quasi-injective if and only if M is fully invariant in E(M).

Let M be a quasi-injective module. Then:

(C1) Every submodule of M is essential in a direct summand of M.

(C2) If V ≤M and V ∼= N ≤⊕ M, then V ≤⊕ M.

A module M with the condition (C2) satisfies the following condition.

(C3) If M1 and M2 are direct summands of M such that M1 ∩M2 = 0, then

M1 ⊕M2 is a direct summand of M.

Let M be a module.

(i) M is called continuous if it satisfies (C1) and (C2) conditions.

(ii) M is said to be quasi-continuous if it has (C1) and (C3) conditions.

(iii) M is called extending (or CS) if it satisfies (C1) condition.

A module M is said to be FI-extending (fully invariant extending) if every fully

invariant submodule is essential in a direct summand of M.

injective ⇒ quasi-injective ⇒ continuous

⇒ quasi-continuous⇒ extending ⇒ FI-extending



2.2. Say A = Z4 and let

R =

[
A 2A
0 A

]
,

which is a subring of T2(A), 2× 2 upper triangular matrix ring over A.

Then R = Q(R). However, there are exactly 13 right essential overrings of R.

For f ∈ Hom(2AA, AA) and x ∈ A, let (f · x)(s) = f(xs) for all s ∈ 2A.

We put

E =

[
A ⊕ Hom(2AA, AA) A

Hom(2AA, AA) A

]
,

where the addition on E is componentwise and the R-module scalar multiplication

of E over R is given by:[
a+ f b
g c

] [
x y
0 z

]
=

[
ax+ f · x ay + f(y) + bz
g · x g(y) + cz

]

for

[
a+ f b
g c

]
∈ E and

[
x y
0 z

]
∈ R, where a, b, c, x, y, z ∈ A and

f, g ∈ Hom (2AA, AA).

Theorem 2.3. E is an injective hull of RR.



Example 2.4. Therefore all possible intermediate R-modules between RR

and ER are:

E =

[
A ⊕ Hom(2AA, AA) A

Hom(2AA, AA) A

]
, V =

[
A⊕Hom (2AA, AA) 2A

Hom (2AA, AA) A

]
,

Y =

[
A⊕Hom (2AA, AA) A

0 A

]
, W =

[
A A

Hom (2AA, AA) A

]
,

S =

[
A 2A

Hom (2AA, AA) A

]
,

U =

[
A⊕Hom (2AA, AA) 2A

0 A

]
, T =

[
A A
0 A

]
, and R =

[
A 2A
0 A

]
.

2.5. E, Y , and W cannot be right essential overrings of R.

Proof. Assume that E has a ring structure which is a right essential overring

of R. Then[
0 2
0 0

]
=

[
f0 0
0 0

] [
0 2
0 0

]
=

[
f0 0
0 0

]([
2 0
0 2

] [
0 1
0 0

])
=

([
f0 0
0 0

] [
2 0
0 2

])[
0 1
0 0

]
=

[
0 0
0 0

] [
0 1
0 0

]
= 0,

a contradiction.



2.6. V =

[
A⊕Hom (2AA, AA) 2A

Hom (2AA, AA) A

]
and R =

[
A 2A
0 A

]
, where A = Z4.

There are exactly four ring structures on V which are right essential overrings
of R.

For f ∈ Hom(2AA, AA) and x ∈ A, let (f · x)(s) = f(xs) for all s ∈ 2A. Put

f0 ∈ Hom(2AA, AA)

such that
f0(2a) = 2a

for a ∈ A. Then
Hom(2AA, AA) = f0 ·A.

Thus if f ∈ Hom(2AA, AA), then f = f0 · r for some r ∈ A.

Key Idea: (i) If V is a right essential overring of R, then 1V = 1R.

(ii) Thus 1V = 1R = e1 + e2, where

e1 =

[
1 0
0 0

]
and e2 =

[
0 0
0 1

]
.

Also, e1 = e2
1, e2 = e2

2, and e1e2 = e2e1 = 0.

(iii) V = e1V e1 + e1V e2 + e2V e1 + e2V e2 and compute

e1V e1, e1V e2, e2V e1, and e2V e2.



For

v1 =

[
a1 + f0 · r1 2b1
f0 · s1 c1

]
, v2 =

[
a2 + f0 · r2 2b2
f0 · s2 c2

]
in V,

define multiplications •1, •2, •3, and •4:

v1 •1 v2 =

[
x y
z w

]
,

where

x = a1a2 + f0 · r1a2 + f0 · a1r2 + f0 · r1r2,

y = 2a1b2 + 2r1b2 + 2b1c2,

z = f0 · s1a2 + f0 · s1r2 + f0 · c1s2,

and
w = 2s1b2 + c1c2.



v1 =

[
a1 + f0 · r1 2b1
f0 · s1 c1

]
, v2 =

[
a2 + f0 · r2 2b2
f0 · s2 c2

]
in V,

where

V =

[
A⊕Hom (2AA, AA) 2A

Hom (2AA, AA) A

]

v1 •2 v2 =

[
x y
z w

]
,

where

x = a1a2 + 2r1r2 + f0 · r1a2 + f0 · a1r2 + f0 · r1r2,

y = 2a1b2 + 2r1b2 + 2b1c2,

z = f0 · s1a2 + f0 · s1r2 + f0 · c1s2,

and
w = 2s1b2 + c1c2.



v1 =

[
a1 + f0 · r1 2b1
f0 · s1 c1

]
, v2 =

[
a2 + f0 · r2 2b2
f0 · s2 c2

]
in V,

where

V =

[
A⊕Hom (2AA, AA) 2A

Hom (2AA, AA) A

]

v1 •3 v2 =

[
x y
z w

]
,

where

x = a1a2 + 2s1r2 + 2a1s2 + 2c1s2 + f0 · r1a2 + f0 · a1r2 + f0 · r1r2,

y = 2a1b2 + 2r1b2 + 2b1c2,

z = f0 · s1a2 + f0 · s1r2 + f0 · c1s2,

and
w = 2s1b2 + c1c2.



v1 =

[
a1 + f0 · r1 2b1
f0 · s1 c1

]
, v2 =

[
a2 + f0 · r2 2b2
f0 · s2 c2

]
in V,

where

V =

[
A⊕Hom (2AA, AA) 2A

Hom (2AA, AA) A

]

v1 •4 v2 =

[
x y
z w

]
,

where

x = a1a2 + 2r1r2 + 2s1r2 + 2a1s2 + 2c1s2 + f0 · r1a2 + f0 · a1r2 + f0 · r1r2,

y = 2a1b2 + 2r1b2 + 2b1c2,

z = f0 · s1a2 + f0 · s1r2 + f0 · c1s2,

and
w = 2s1b2 + c1c2.



2.7. There are exactly four ring structures on S which are right essential

overrings of R:

(S,+, ◦1), (S,+, ◦2), (S,+, ◦3), (S,+, ◦4),

where

A = Z4

and

S =

[
A 2A

Hom (2AA, AA) A

]
.

2.8. There are exactly two ring structures on U which are right essential

overrings of R

(U,+,}1), (U,+,}2),

where

U =

[
A⊕Hom (2AA, AA) 2A

0 A

]

and

R =

[
A 2A
0 A

]
.

A = Z4.



2.9. As in 1.5 There are exactly two ring structures on T which are right

essential overrings of R:

(T,+, �1), (T,+, �2),

where

T =

[
A A
0 A

]

and

R =

[
A 2A
0 A

]
.

A = Z4.



E =

[
A ⊕ Hom(2AA, AA) A

Hom(2AA, AA) A

]
, V =

[
A⊕Hom (2AA, AA) 2A

Hom (2AA, AA) A

]
,

Y =

[
A⊕Hom (2AA, AA) A

0 A

]
, W =

[
A A

Hom (2AA, AA) A

]
,

S =

[
A 2A

Hom (2AA, AA) A

]
,

U =

[
A⊕Hom (2AA, AA) 2A

0 A

]
, T =

[
A A
0 A

]
, and R =

[
A 2A
0 A

]
.

A = Z4.

2.10. (i) (V,+, •1) ∼= (V,+, •2) ∼= (V,+, •3) ∼= (V,+, •4).

(ii) (S,+, ◦1) is a subring of both (V,+, •1) and (V,+, •2).

(iii) (S,+, ◦2) is a subring of both (V,+, •3) and (V,+, •4).

(iv) (S,+, ◦1) ∼= (S,+, ◦2) 6∼= (S,+, ◦3) ∼= (S,+, ◦4).

(v) (U,+,}1) is a subring of both (V,+, •1) and (V,+, •2).

(vi) (U,+,}2) is a subring of both (V,+, •3) and (V,+, •4).

(vii) (U,+,}2) ∼= (U,+,}2).

(viii) (T,+, �1) ∼= (T,+, �2).



E =

[
A ⊕ Hom(2AA, AA) A

Hom(2AA, AA) A

]
, V =

[
A⊕Hom (2AA, AA) 2A

Hom (2AA, AA) A

]
,

Y =

[
A⊕Hom (2AA, AA) A

0 A

]
, W =

[
A A

Hom (2AA, AA) A

]
,

S =

[
A 2A

Hom (2AA, AA) A

]
,

U =

[
A⊕Hom (2AA, AA) 2A

0 A

]
, T =

[
A A
0 A

]
, and R =

[
A 2A
0 A

]
.

A = Z4.

2.11. (i) R is not right FI-extending.

(ii) (V,+, •1) (hence (V,+, •2), (V,+, •3), and (V,+, •4)) is right extending,

but not right quasi-continuous.

(iii) (S,+, ◦3) (so (S,+, ◦4)) is right self-injective, while (S,+, ◦1) (so (S,+, ◦2))

is not even right FI-extending.

(iv) (U,+,}1) (hence (U,+,}2)) is right FI-extending, but not right extending.

(v) (T,+, �1) (hence (T,+, �2)) is right FI-extending, but not right extending.



E =

[
A ⊕ Hom(2AA, AA) A

Hom(2AA, AA) A

]
, V =

[
A⊕Hom (2AA, AA) 2A

Hom (2AA, AA) A

]
,

Y =

[
A⊕Hom (2AA, AA) A

0 A

]
, W =

[
A A

Hom (2AA, AA) A

]
,

S =

[
A 2A

Hom (2AA, AA) A

]
,

U =

[
A⊕Hom (2AA, AA) 2A

0 A

]
, T =

[
A A
0 A

]
, and R.

A = Z4.

2.12. (i) All minimal right FI-extending right essential overrings ring of R are:

(S,+, ◦3), (S,+, ◦4), (U,+,}1), (U,+,}2), (T,+, �1), (T,+, �2).

(ii) All minimal right extending right essential overrings of R are:

(V,+, •1), (V,+, •2), (V,+, •3), (V,+, •4), (S,+, ◦3), (S,+, ◦4).

(iii) All minimal right quasi-continuous right essential overrings of R are:

(S,+, ◦3) and (S,+, ◦4).

(iv) All minimal right continuous right essential overrings of R are:

(S,+, ◦3) and (S,+, ◦4).

(v) All minimal right self-injective right essential overrings of R are:

(S,+, ◦3) and (S,+, ◦4).



3. Ring Hulls

Definition 3.1. Let K denote a class of rings.

(i) The smallest right ring of quotients T of a ring R which belongs to K is called

the K absolute to Q(R) ring hull of R. We denote T = Q̂K(R).

(ii) The smallest right essential overring S of a ring R which belongs to K is

called the K absolute ring hull of R. We denote S = QK(R).

(iii) A minimal right essential overring of a ring R which belongs to K is called

a K right ring hull of R.

A ring R is called right FI-extending if RR is FI-extending. Equivalently,

every two-sided ideal of R is essential in a direct summand of RR as a right

R-module.

right injective ⇒ right quasi-injective ⇒ right continuous

⇒ right quasi-continuous⇒ right extending ⇒ right FI-extending



Example 3.2. Let F be a field and put

R =

[
F F ⊕ F
0 F

]
=


 a 0 x

0 a y
0 0 c

 | a, c, x, y ∈ F
 .

Then R is right nonsingular, Q(R) = Mat3(F ), and R is not right FI-extending.

(i) Let H1 =

[
F ⊕ F F ⊕ F

0 F

]
=


 a 0 x

0 b y
0 0 c

 | a, b, c, x, y ∈ F
 , and let

H2 =


 a+ b a x

0 b y
0 0 c

 | a, b, c, x, y ∈ F
 .

Note that R, H1, and H2 are subrings of Mat3(F ). Define φ : H1 → H2 by

φ

 a 0 x
0 b y
0 0 c

 =

 a a− b x− y
0 b y
0 0 c

 .
Then φ is a ring isomorphism. R is not right FI-extending. H1 is right

FI-extending. Thus H2 is right FI-extending because H1
∼= H2.

Note that there is no proper intermediate subring between R and H1, also

between R and H2. Thus H1 and H2 are right FI-extending ring hulls of R.

(ii) Assume that F = Z2. Consider

H3 =


 a+ b b x

b a y
0 0 c

 | a, b, c, x, y ∈ F
 .

Then the ring H3 is right FI-extending. Also H3 is a right FI-extending ring hull of



R because there is no proper intermediate ring between R and H3.

But H3 6∼= H1.

Let FI be the class of right FI-extending rings. Say R is a ring and B(Q(R)) is

the set of central idempotents of the ring Q(R). Let RB(Q(R)) be the subring of

Q(R) generated by R and B(Q(R)), which is called the idempotent closure of R

by Beidar and Wisbauer.

Theorem 3.3. Let R be a semiprime ring. Then:

(i) Q̂FI(R) the right FI-extending (absolute to Q(R)) exists.

(ii) Q̂FI(R) = RB(Q(R)).

Note that Q̂FI(R) is the smallest right FI-extending right ring of quotients of R.



4. Quasi-Baer Ring Hulls

Theorem 4.1. (W. E. Clark) Let R be a finite dimensional algebra over

an algebraically closed field F . Then the following statements are equivalent.

(i) R is a twisted semigroup F -algebra of some matrix units semigroup S

containing all idempotent matrix units e11, e22, . . . , enn.

(ii) The left annihilator of every ideal of R is generated by an idempotent and R

has a finite two-sided ideal lattice.

Theorem 4.2. (W. E. Clark) Let L be a finite distributive lattice. Then

there exists an artinian ring R such that:

(1) The left annihilator of any ideal of R is generated by an idempotent;

(2) The lattice L is isomorphic to the sublattice {`R(I) | RI ≤ RR} of the lattice

of all ideals of R.

4.3. A ring R is called quasi-Baer if the left annihilator of every ideal

of R is generated by an idempotent of R as a left ideal.



4.4. Then following conditions are equivalent.

(i) R is a quasi-Baer ring.

(ii) For each I E R, there exists e2 = e ∈ R such that rR(I) = eR.

Example 4.5. (i) Every prime ring is a quasi-Baer ring.

(ii) Every Baer ring is a quasi-Baer ring.

(iv) Any semiprime right Noetherian group algebra over a field is quasi-Baer.

(v) The quasi-Baer ring property is Morita invariant.

(vi) Every piecewise domain is a quasi-Baer ring.

Theorem 4.6. Let R be a quasi-Baer ring. Then the following are

quasi-Baer rings.

(i) eRe where e2 = e ∈ R.

(ii) R[x], R[x, x−1], and R[[x]].

(iii) Tn(R) is quasi-Baer for any positive integer n.

(iv) CFMΓ(R),RFMΓ(R), and CRFMΓ(R) are quasi-Baer.

(v) The endomorphism ring of any projective module over a quasi-Baer ring

is a quasi-Baer ring.



4.7. A ring R is called biregular if for every x ∈ R there is a central

idempotent e ∈ R such that RxR = eR.

4.8. (i) Boolean rings are biregular.

(ii) Simple rings are biregular.

(iii) Reduced regular rings are biregular.

(iv) ([Armendariz and Steinberg]) Right self-injective regular PI-rings

are biregular.

(v) If R is a semiprime PI-ring, then Q(R) is biregular.

Theorem 4.9. Let R be a biregular ring. Then the following are equivalent.

(i) R is a quasi-Baer ring.

(ii) The lattice of principal two-sided ideals of R is complete.

Theorem 4.10. (Birkenmeier, Müller, and Rizvi) Let R be a semiprime ring.

Then R is quasi-Baer if and only if R is right FI-extending.



4.11. Let qB be the class of quasi-Baer rings. Recall that Q̂qB(R) denotes

the quasi-Baer (absolute to Q(R)) ring hull of R.

In other words, Q̂qB(R) is the smallest quasi-Baer right ring pof quotients of R.

Theorem 4.12. Let R be a semiprime ring. Then:

(i) Q̂qB(R) exists.

(ii) Q̂qB(R) = Q̂FI(R) = RB(Q(R)).

Theorem 4.13. Let R be a semiprime ring. Then R is quasi-Baer if and only if

B(Q(R)) ⊆ R.

4.14. Let R be a semiprime ring. Then the central closure of R, the normal

closure of R, Qs(R), Qm(R), andQ(R) are all quasi-Baer and right FI-extending.



4.15. Let R be a semiprime ring. If R and a ring S are Morita equivalent, then

Q̂qB(R) and Q̂qB(S) are Morita equivalent.

4.16. For a ring R, the following are equivalent.

(i) R is regular.

(ii) RB(Q(R)) is regular.

(iii) R is semiprime and Q̂qB(R) is regular.

4.17. Let R be a semiprime ring. Then R has the index of nilpotency at most n

if and only if QqB(R) has the index of nilpotency at most n.

Theorem 4.17. Let R be a semiprime ring with exactly n minimal prime ideals,

say P1, P2, . . . , Pn. Then

Q̂qB(R) ∼= R/P1 ⊕R/P1 ⊕ · · · ⊕R/Pn.



5. Applications to C∗-Algebras

5.1. A C∗-algebra A is a Banach ∗-algebra with the additional norm

condition

||a∗a|| = ||a||2

for all a ∈ A.

5.2. The algebra B(H) on a Hilbert space H is a C∗-algebra. If H = Cn,

then B(H) can be naturally identified with Matn(C), and the adjoint is the

usual conjugate transpose. Any C∗-algebra is a norm closed ∗-subalgebra

of the algebra of B(H) on a Hilbert space H.

5.3. An involution ∗ on an algebra Q is called positive definite if for any finite set

{xi}ni=1 of Q, the relation
∑n

i=1 xix
∗
i = 0 implies that xi = 0. The involution on

a C∗-algebra is positive definite.

Let A be a C∗-algebra. Let

Qs(A) = {q ∈ Q(A) | qI + Iq ⊆ A for some essential ideal of A},

the symmetric ring of quotients of R. Then ∗ can be uniquely extended

to an involution ∗ on Qs(A), where Qs(A) is the symmetric ring of quotients

of R. This involution on Qs(A) is also

positive definite.

Indeed, say
∑n

i=1 xix
∗
i = 0 for xi ∈ Qs(A) and i = 1, . . . , n. Then there is

an essential ideal I of A such that xiI + Ixi ⊆ A. For each y ∈ I,

n∑
i=1

(yxi)(yxi)
∗ = 0.

So yxi = 0 for all i. Hence Ixi = 0, and so xi = 0 for all i.



5.4. Let Q be a unital complex ∗-algebra for which ∗ is positive definite.

The positive cone Q+ of Q is the set of all elements of the form∑
xix
∗
i

where {xi} is a finite subset of Q. For x, y ∈ Q+, define x ≤ y if y − x ∈ Q+.

Then (Q+,≤) is a partially ordered real vector space. An element x ∈ Q is

said to be bounded if xx∗ ≤ n1 for some positive integer n. This is equivalent

to the existence of a finite subset {yi} of Q such that

xx∗ +
∑

yy∗ = n1.

The set of all bounded elements of Q is denoted by Qb. Then Qb is a

∗-subalgebra of Q.

5.5. For a C∗-algebra A, let

M(A) = {q ∈ Qs(A) | qA+Aq ⊆ A},

the algebra of all double centralizers on A which is called the multiplier algebra

of A. Note that M(A) is the largest C∗-algebra in which A is contained as

a norm closed essential ideal.

5.6. The set Ice of all norm closed essential ideals of a C∗-algebra A forms a filter

directed downwards by inclusion. Indeed, let I, J ∈ Ice. Then I ∩ J ∈ Ice. Also,

if I ⊇ J , then M(I) ⊆M(J). Thus {M(I)}I∈Ice is ordered by inverse inclusion.



5.7. For every C∗-algebra A, there is a unique ∗-isomorphism:

limI∈IceM(I) ∼= Qb(A).

5.8. The norm closure Mloc(A) of Qb(A) is called the local multiplier algebra

of A.

The local multiplier algebra Mloc(A) was first used by Elliott and

Pedersen to show the innerness of certain ∗-automorphisms and derivations.

Theorem 5.9. Mloc(A) is a quasi-Baer ring for any C∗-algebra A.

5.10. A C∗-algebra is called an AW ∗-algebra if A is Baer.

5.11. Let A be an AW ∗-algebra and I a norm closed essential ideal of A.

Then M(I) = A. Therefore Mloc(A) = A.

5.12. Let A be a C∗-algebra. The C∗-subalgebra

ACen(Qb(A))

of Mloc(A) is called the bounded central closure of A.



If A = ACen(Qb(A)), then A is said to be boundedly centrally closed.

Theorem 5.13. Let A be a unital C∗-algebra. Then the following

are equivalent.

(i) A is boundedly centrally closed.

(ii) A is quasi-Baer.

Corollary 5.14. (i) Any AW ∗-algebra is boundedly centrally closed.

(ii) Mloc(A) is boundedly centrally closed for any C∗-algebra A.

Definition 5.15. Let A be a C∗-algebra. We call the smallest boundedly

centrally closed C∗-subalgebra of Mloc(A) containing A the

boundedly centrally closed hull of A.

Note that B(Q(A)) ⊆ Qb(A) and so QqB(A) ⊆ Qb(A) ⊆Mloc(A).

Theorem 5.16. We have the following for a unital C∗-algebra A.

(i) QqB(A) = ACen(Qb(A)).

(ii) QqB(A) is the boundedly centrally closed hull of A.

(iii) Let B be an intermediate C∗-algebra between A and Mloc(A).

Then B is boundedly centrally closed if and only if B(Q(A)) ⊆ B.



Theorem 5.17. Let A be a C∗-algebra and B an intermediate

C∗-algebra between A and Mloc(A). Then we have the following.

(i) BB(Q(A)) = BCen(Qb(B)).

(ii) B is boundedly centrally closed if and only if B = BB(Q(A)).

(iii) AB(Q(A)) is the boundedly centrally closed hull of A.

Corollary 5.18. Let A be a C∗-algebra and B an intermediate C∗-algebra

between A and Mloc(A). Then we have the following.

(i) Cen(Mloc(B)) = Cen(Mloc(A)).

(ii) M(B)Cen(Qb(M(B))) = M(B)B(Q(A)).

(iv) M(B) is boundedly centrally closed if and only if B(Q(A)) ⊆M(B).



5.19. Let {Ai} be a set of C∗-algebras. By
∏

C∗

i Ai, we denote the C∗-algebra

∏
C∗

i Ai =

{
(ai) ∈

∏
i

Ai | supi ||ai|| <∞

}
,

which is called the C∗-direct product of {Ai}.

Theorem 5.20. Let A be a C∗-algebra and Λ an index set. Then the following

conditions are equivalent.

(i) There exists a set of uniform ideals {Ui | i ∈ Λ} of A such that
∑

i∈Λ Ui

is a direct sum, CUi = Ui for each i, and `A(
⊕

i∈Λ Ui) = 0.

(ii) The extended centroid of A is C|Λ|.

(iii) Mloc(A) is a C∗-direct product of |Λ| prime C∗-algebras.

(iv) Cen(Mloc(A)) is a C∗-direct product of |Λ| copies of C.



Corollary 5.21. Let A be an AW ∗-algebra and ℵ a cardinality. Then the

following conditions are equivalent.

(i) The extended centroid of A is Cℵ.

(ii) A is a C∗-direct product of ℵ prime AW ∗-algebras.

(iii) Cen(A) is a C∗-direct product of ℵ copies of C.

Theorem 5.22. Let A be a C∗-algebra and n a positive integer.

Then the following conditions are equivalent.

(i) A has exactly n minimal prime ideals.

(ii) QqB(A1) is a direct sum of n prime C∗-algebras.

(iii) The extended centroid of A is Cn.

(iv) Mloc(A) is a direct sum of n prime C∗-algebras.

(v) Cen(Mloc(A)) = Cn.

In this case, every boundedly centrally closed intermediate C∗-algebra

between A and Mloc(A) is a direct sum of n prime C∗-algebras.

Corollary 5.23. Let A be a C∗-algebra. Then the following are equivalent.

(i) A satisfies a PI and has exactly n minimal prime ideals.

(ii) A ∼= Matk1
(C)⊕ · · · ⊕Matkn

(C) (∗-isomorphic) for some positive

integers k1, . . . , kn.


