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Introduction

R : Prime ring, not necessarily with an identity.

Z (R): The centre of R

Q : The symmetric Martindale quotient ring of R.

C : The centre of Q, is called the extended centroid of R.
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Definition
An additive map d : R → R is called a derivation if
d(xy) = xd(y) + d(x)y for all x , y ∈ R.

Example: d(x) = ax − xa, where a ∈ R, is a derivation induced
by a.

Definition
An additive map g : R → R is called a generalized derivation if
there exists a derivation d of R such that
g(xy) = g(x)y + xd(x) for any x , y ∈ R.

Example: g(x) = ax and g(x) = ax + xb, where a,b ∈ R.
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Definition
An additive mapping ∗ : R −→ R is called an involution if
(ab)∗ = b∗a∗ and (a∗)∗ = a. Any involution of R can be
uniquely extend to an involution of Q.

Definition
A derivation d of R is called a ∗-derivation if d(x∗) = d(x)∗ for
any x ∈ R. A derivation d of R is called a skew ∗-derivation if
d(x∗) = −d(x)∗ for any x ∈ R.
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If φ(x) = αx + d(x), where α ∈ Z and d is a derivation, then
φ(x)y + xφ(y) = 0 whenever xy = 0.

In [CKL], Chebotar, Ke and Lee proved that the converse is true
in some special cases when R has identity and possesses a
nontrivial idempotent. If φ : R → R is an additive map such that
φ(x)y + xφ(y) = 0 whenever xy = 0, then φ(x) = αx + d(x) for
some α ∈ Z and d is a derivation of R ([CKL, Theorem 2]).

Lee generalized this result without assuming that R has identity
([Lee04, Corollary 1.2]).



Introduction Results Preliminaries Proof References

Here we want to prove an analogous result on R with an
involution.

If d is a ∗-derivation, then d(x)y∗ + xd(y)∗ = 0 whenever
xy∗ = 0.

Our goal is to characterize an additive map satisfies this
property.
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Main Result

Theorem A Let R be a prime ring with an involution ∗. Assume
R has nontrivial idempotents. If δ : R → R is an additive map
such that δ(x)y∗ + xδ(y)∗ = 0 whenever xy∗ = 0. Then there
exists a ∗-derivation g : Q → Q such that δ(xy) = δ(x)y + xg(y)
for any x , y ∈ R.
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Preliminaries

Let R be a prime ring with nontrivial idempotents. Let E be the
additive subgroup generated by idempotents of R, and E be the
subring generated by E . We begin with a useful result for maps
acting on zero products.

Theorem 2.1 ([CL, Theorem 2.3]). Let R be a prime ring with
nontrivial idempotents. If Φ: R × R → R is a bi-additive map
such that Φ(x , y) = 0 whenever xy = 0. Then
Φ(xa, y) = Φ(x ,ay) for any x , y ∈ R and any a ∈ E. In
particular, there exists a nonzero ideal I of R such that
Φ(xa, y) = Φ(x ,ay) for any x , y ∈ R and any a ∈ I.
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Another lemma we will use is about a simple functional identity.
In fact, it is a special case of [Br95, Lemma 4.5].

Lemma 2.2 ([Br95, Lemma 4.5]). Let R be a prime ring. If
f ,g : R → R are additive maps such that f (x)y = xg(y) for any
x , y ∈ R. Then there exists q ∈ Q such that f (x) = xq and
g(x) = qx for any x ∈ R.
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Lemma 3.1. There exists a nonzero ideal I = I∗ of R such that

(3.2) δ(xa)y + xaδ(y∗)∗ = δ(x)ay + xδ(y∗a∗)∗

for any x , y ∈ R and any a ∈ I.

Proof. Define Φ(x , y) = δ(x)y + xδ(y∗)∗. Then for xy = 0 we
have x(y∗)∗ = 0, hence Φ(x , y) = δ(x)(y∗)∗ + xδ(y∗)∗ = 0 by
our hypothesis. In view of Theorem 2.1, there exists a nonzero
ideal I of R such that Φ(xa, y) = Φ(x ,ay) for any x , y ∈ R and
any a ∈ I. This means, δ(xa)y + xaδ(y∗)∗ = δ(x)ay + xδ(y∗a∗)∗.
We may replace I by I ∩ I∗ and just assume I∗ = I, as asserted.
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Lemma 3.2. There exists a ∗-derivation g : I → Q such that
δ(xa) = δ(x)a + xg(a) for all x ∈ R and a ∈ I.

Proof. By Lemma 3.1 we have

(3.3)
(
δ(xa)− δ(x)a

)
y = x

(
δ(y∗a∗)∗ − aδ(y∗)∗

)
for all x , y ∈ R and a ∈ I. Applying Lemma 2.2 to (3.3), there
exists an additive map g : I → Q such that

(3.4) δ(xa)− δ(x)a = xg(a)

and

(3.5) δ(y∗a∗)∗ − aδ(y∗)∗ = g(a)y .
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Now combining (3.4) and (3.5), we get

(3.6) δ(xa) = δ(x)a + xg(a) = δ(x)a + xg(a∗)∗.

So g(a∗) = g(a)∗ for all a ∈ I. Moreover, using (3.6) to expand
δ(xab) in two ways,

δ(x(ab)) = δ(x)ab + xg(ab)

and

δ((xa)b) = δ(xa)b + xag(b) = δ(x)ab + xg(a)b + xag(b)

for all x ∈ R and a,b ∈ I. Hence g(ab) = g(a)b + ag(b) for all
a,b ∈ I, as asserted.
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Lemma 3.3. g can be uniquely extended to a ∗-derivation on
Q.

Proof. Note that from (3.6) we know Rg(I),g(I)R ⊆ R. Hence,
if we set J = I2, we have J∗ = J and g(J) ⊆ g(I)I + Ig(I) ⊆ R.
This means, g restricted on J is a derivation from J into R.
Hence g can be uniquely extended to a derivation on Q. For
any q ∈ Q, choose W to be a nonzero ideal such that Wq ⊆ R.
Then from (3.6) we know
δ(wq) = δ(w)q + wg(q) = δ(w)q + wg(q∗)∗ for any w ∈W . So
W (g(q)− g(q∗)∗) = 0, and hence g(q∗) = g(q)∗ for any q ∈ Q.
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Proof of Main Result

Proof. From Lemma 3.2 and Lemma 3.3 we know there is a
∗-derivation g : Q → Q and a nonzero ideal I of R with I∗ = I,
such that δ(xa) = δ(x)a + xg(a) for any x ∈ R and a ∈ I. Take
x , y ∈ R and a,b ∈ I, from (3.2) we can compute
δ(xya)b + xyaδ(b∗)∗ in two ways:



Introduction Results Preliminaries Proof References

δ((xy)a)b + (xy)aδ(b∗)∗ = δ(xy)ab + xyδ(b∗a∗)∗

and

δ(x(ya))b + x(ya)δ(b∗)∗ = δ(x)yab + xδ(b∗a∗y∗)∗

= δ(x)yab + x
(
δ(b∗)a∗y∗ + b∗g(a∗y∗)

)∗
= δ(x)yab + x

(
δ(b∗)a∗y∗ + b∗g(a∗)y∗ + b∗a∗g(y∗)

)∗
= δ(x)yab + x

(
δ(b∗a∗)y∗ + b∗a∗g(y)∗

)∗
= δ(x)yab + xyδ(b∗a∗)∗ + xg(y)ab.
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So
(
δ(xy)− δ(x)y − xg(y)

)
I2 = 0, and it follows that

δ(xy) = δ(x)y + xg(y) for any x , y ∈ R. This completes the
proof of our theorem.

Recall that a derivation d of R is called a skew ∗-derivation if
d(x∗) = −d(x)∗ for any x ∈ R. Analogously to Theorem 3.4,
that is, we have
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Theorem B Let R be a prime ring with an involution ∗. Assume
R has nontrivial idempotents. If δ : R → R is an additive map
such that δ(x)y∗ − xδ(y)∗ = 0 whenever xy∗ = 0. Then there
exists a skew ∗-derivation g : Q → Q such that
δ(xy) = δ(x)y + xg(y) for any x , y ∈ R.



Introduction Results Preliminaries Proof References

[BMM] : K.I. Beidar, W.S. Martindale 3rd and A.V. Mikhalev.
Rings with Generalized Identities.
Marcel Dekker, Inc., New York-Basel-Hong Kong, 1996.

M. Bresar
On generalized biderivations and related maps.
J. Algebra., 172(1995), 764- 786.

[CKL]:M. A. Chebotar, W,-F. Ke and P.-H. Lee.
Maps characterized by action on zero products.
Pacific J. Math., 216(2004), 217-228.



Introduction Results Preliminaries Proof References

[CL]:C.-L. Chuang and T.-K.Lee.
Derivations modulo elementary operatiors.
J.Algebra.,2011, to appear.

[L04]:T.-K. Lee.
Generalized skew derivations characterized by acting on
zero products.
Pacific J. Math., 216(2004), 293-301.

[Sw10]:G. A. Swain.
Maps preserving zeros of xy∗.
Comm. Algebra., 38(2010), 1613-1620.


	Introduction
	Results
	Preliminaries
	Proof
	References

