

Maps Acting on Some Zero Products.

Muzibur Rahman Mozumder

National Taiwan University

11 July 2011

Introduction	Results	Preliminaries	Proof	References
Outline				

Introduction	Results	Preliminaries	Proof	References
Introduction				

- *R* : Prime ring, not necessarily with an identity.
- Z(R): The centre of R
- Q: The symmetric Martindale quotient ring of R.
- C: The centre of Q, is called the extended centroid of R.

Introduction	Results	Preliminaries	Proof	References

Definition

An additive map $d \colon R \to R$ is called a derivation if d(xy) = xd(y) + d(x)y for all $x, y \in R$.

Example: d(x) = ax - xa, where $a \in R$, is a derivation induced by *a*.

Definition

An additive map $g \colon R \to R$ is called a generalized derivation if there exists a derivation d of R such that g(xy) = g(x)y + xd(x) for any $x, y \in R$.

Example: g(x) = ax and g(x) = ax + xb, where $a, b \in R$.

Introduction	Results	Preliminaries	Proof	References

Definition

An additive mapping $* : R \longrightarrow R$ is called an involution if $(ab)^* = b^*a^*$ and $(a^*)^* = a$. Any involution of *R* can be uniquely extend to an involution of *Q*.

Definition

A derivation *d* of *R* is called a *-derivation if $d(x^*) = d(x)^*$ for any $x \in R$. A derivation *d* of *R* is called a skew *-derivation if $d(x^*) = -d(x)^*$ for any $x \in R$.

Introduction Results Preliminaries Proof References

If $\phi(x) = \alpha x + d(x)$, where $\alpha \in Z$ and *d* is a derivation, then $\phi(x)y + x\phi(y) = 0$ whenever xy = 0.

In [CKL], Chebotar, Ke and Lee proved that the converse is true in some special cases when *R* has identity and possesses a nontrivial idempotent. If $\phi: R \to R$ is an additive map such that $\phi(x)y + x\phi(y) = 0$ whenever xy = 0, then $\phi(x) = \alpha x + d(x)$ for some $\alpha \in Z$ and *d* is a derivation of *R* ([CKL, Theorem 2]).

Lee generalized this result without assuming that *R* has identity ([Lee04, Corollary 1.2]).

Here we want to prove an analogous result on *R* with an involution.

If *d* is a *-derivation, then $d(x)y^* + xd(y)^* = 0$ whenever $xy^* = 0$.

Our goal is to characterize an additive map satisfies this property.

Introduction	Results	Preliminaries	Proof	References
Main Result				

Theorem A Let *R* be a prime ring with an involution *. Assume *R* has nontrivial idempotents. If $\delta: R \to R$ is an additive map such that $\delta(x)y^* + x\delta(y)^* = 0$ whenever $xy^* = 0$. Then there exists a *-derivation $g: Q \to Q$ such that $\delta(xy) = \delta(x)y + xg(y)$ for any $x, y \in R$.

Let *R* be a prime ring with nontrivial idempotents. Let *E* be the additive subgroup generated by idempotents of *R*, and \overline{E} be the subring generated by *E*. We begin with a useful result for maps acting on zero products.

Theorem 2.1 ([CL, Theorem 2.3]). Let *R* be a prime ring with nontrivial idempotents. If $\Phi : R \times R \to R$ is a bi-additive map such that $\Phi(x, y) = 0$ whenever xy = 0. Then $\Phi(xa, y) = \Phi(x, ay)$ for any $x, y \in R$ and any $a \in \overline{E}$. In particular, there exists a nonzero ideal I of R such that $\Phi(xa, y) = \Phi(x, ay)$ for any $x, y \in R$ and any $a \in I$.

Another lemma we will use is about a simple functional identity. In fact, it is a special case of [Br95, Lemma 4.5].

Lemma 2.2 ([Br95, Lemma 4.5]). Let *R* be a prime ring. If $f, g: R \rightarrow R$ are additive maps such that f(x)y = xg(y) for any $x, y \in R$. Then there exists $q \in Q$ such that f(x) = xq and g(x) = qx for any $x \in R$.

Lemma 3.1. There exists a nonzero ideal $I = I^*$ of R such that

(3.2)
$$\delta(xa)y + xa\delta(y^*)^* = \delta(x)ay + x\delta(y^*a^*)^*$$

for any $x, y \in R$ and any $a \in I$.

Proof. Define $\Phi(x, y) = \delta(x)y + x\delta(y^*)^*$. Then for xy = 0 we have $x(y^*)^* = 0$, hence $\Phi(x, y) = \delta(x)(y^*)^* + x\delta(y^*)^* = 0$ by our hypothesis. In view of Theorem 2.1, there exists a nonzero ideal *I* of *R* such that $\Phi(xa, y) = \Phi(x, ay)$ for any $x, y \in R$ and any $a \in I$. This means, $\delta(xa)y + xa\delta(y^*)^* = \delta(x)ay + x\delta(y^*a^*)^*$. We may replace *I* by $I \cap I^*$ and just assume $I^* = I$, as asserted.

Introduction Results Preliminaries Proof References

Lemma 3.2. There exists a *-derivation $g: I \rightarrow Q$ such that $\delta(xa) = \delta(x)a + xg(a)$ for all $x \in R$ and $a \in I$. **Proof.** By Lemma 3.1 we have

(3.3)
$$(\delta(xa) - \delta(x)a)y = x(\delta(y^*a^*)^* - a\delta(y^*)^*)$$

for all $x, y \in R$ and $a \in I$. Applying Lemma 2.2 to (3.3), there exists an additive map $g: I \to Q$ such that

$$(3.4) \qquad \qquad \delta(xa) - \delta(x)a = xg(a)$$

and

(3.5)
$$\delta(y^*a^*)^* - a\delta(y^*)^* = g(a)y.$$

Now combining (3.4) and (3.5), we get

(3.6)
$$\delta(xa) = \delta(x)a + xg(a) = \delta(x)a + xg(a^*)^*.$$

So $g(a^*) = g(a)^*$ for all $a \in I$. Moreover, using (3.6) to expand $\delta(xab)$ in two ways,

$$\delta(x(ab)) = \delta(x)ab + xg(ab)$$

and

$$\delta((xa)b) = \delta(xa)b + xag(b) = \delta(x)ab + xg(a)b + xag(b)$$

for all $x \in R$ and $a, b \in I$. Hence g(ab) = g(a)b + ag(b) for all $a, b \in I$, as asserted.

Lemma 3.3. *g* can be uniquely extended to a *-derivation on *Q*.

Proof. Note that from (3.6) we know $Rg(I), g(I)R \subseteq R$. Hence, if we set $J = I^2$, we have $J^* = J$ and $g(J) \subseteq g(I)I + Ig(I) \subseteq R$. This means, *g* restricted on *J* is a derivation from *J* into *R*. Hence *g* can be uniquely extended to a derivation on *Q*. For any $q \in Q$, choose *W* to be a nonzero ideal such that $Wq \subseteq R$. Then from (3.6) we know

 $\delta(wq) = \delta(w)q + wg(q) = \delta(w)q + wg(q^*)^*$ for any $w \in W$. So $W(g(q) - g(q^*)^*) = 0$, and hence $g(q^*) = g(q)^*$ for any $q \in Q$.

Introduction	Results	Preliminaries	Proof	References
Proof of M	ain Result			

Proof. From Lemma 3.2 and Lemma 3.3 we know there is a *-derivation $g: Q \to Q$ and a nonzero ideal *I* of *R* with $I^* = I$, such that $\delta(xa) = \delta(x)a + xg(a)$ for any $x \in R$ and $a \in I$. Take $x, y \in R$ and $a, b \in I$, from (3.2) we can compute $\delta(xya)b + xya\delta(b^*)^*$ in two ways:

$$\delta((xy)a)b + (xy)a\delta(b^*)^* = \delta(xy)ab + xy\delta(b^*a^*)^*$$

and

$$\delta(x(ya))b + x(ya)\delta(b^{*})^{*} = \delta(x)yab + x\delta(b^{*}a^{*}y^{*})^{*}$$

= $\delta(x)yab + x(\delta(b^{*})a^{*}y^{*} + b^{*}g(a^{*}y^{*}))^{*}$
= $\delta(x)yab + x(\delta(b^{*}a^{*}y^{*} + b^{*}g(a^{*})y^{*} + b^{*}a^{*}g(y^{*}))^{*}$
= $\delta(x)yab + x(\delta(b^{*}a^{*})y^{*} + b^{*}a^{*}g(y)^{*})^{*}$
= $\delta(x)yab + xy\delta(b^{*}a^{*})^{*} + xg(y)ab.$

So $(\delta(xy) - \delta(x)y - xg(y))l^2 = 0$, and it follows that $\delta(xy) = \delta(x)y + xg(y)$ for any $x, y \in R$. This completes the proof of our theorem.

Recall that a derivation *d* of *R* is called a skew *-derivation if $d(x^*) = -d(x)^*$ for any $x \in R$. Analogously to Theorem 3.4, that is, we have

Theorem B Let *R* be a prime ring with an involution *. Assume *R* has nontrivial idempotents. If $\delta: R \to R$ is an additive map such that $\delta(x)y^* - x\delta(y)^* = 0$ whenever $xy^* = 0$. Then there exists a skew *-derivation $g: Q \to Q$ such that $\delta(xy) = \delta(x)y + xg(y)$ for any $x, y \in R$.

- [BMM] : K.I. Beidar, W.S. Martindale 3rd and A.V. Mikhalev. Rings with Generalized Identities. Marcel Dekker, Inc., New York-Basel-Hong Kong, 1996.
 - M. Bresar On generalized biderivations and related maps. *J. Algebra.*, 172(1995), 764- 786.

[CKL]:M. A. Chebotar, W,-F. Ke and P.-H. Lee. Maps characterized by action on zero products. *Pacific J. Math.*, 216(2004), 217-228.

Derivations modulo elementary operatiors.

J.Algebra., 2011, to appear.

[L04]:T.-K. Lee.

Generalized skew derivations characterized by acting on zero products.

Pacific J. Math., 216(2004), 293-301.

[Sw10]:G. A. Swain.

Maps preserving zeros of xy*.

Comm. Algebra., 38(2010), 1613-1620.