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Abstract. In the paper The inversion formulae for automorphisms

of polynomial algebras and differential operators in prime charac-

teristic, J. Pure Appl. Algebra 212 (2008), no. 10, 2320–2337, see
also Arxiv:math.RA/0604477, Vladimir Bavula states the following

Conjecture:

(BC) Any endomorphism of a Weyl algebra (in a finite character-
istic case) is a monomorphism.

The purpose of this preprint is to prove BC for A1, show that

BC is wrong for An when n > 1, and prove an analogue of BC for
symplectic Poisson algebras.

The Weyl algebra An is an algebra over a field F generated by 2n ele-
ments x1, . . . xn; y1, . . . , yn which satisfy relations [xi, yj ](= xiyj − yjxi) =
δij , [xi, xj ] = 0, [yi, yj ] = 0, where δij is the Kronecker symbol and
1 ≤ i, j ≤ n. Weyl algebras appeared quite some time ago and initially
were considered only over fields of characteristic zero. Arguably the most
famous problem related to these algebras is the Dixmier conjecture (see [D])
that any homomorphism of An is an automorphism if char(F ) = 0. This
problem is still open even for n = 1.

The finite characteristic case is certainly less popular but lately appears
to attract more attention because it helps to connect questions related to
the Weyl algebras and to polynomial rings, e. g. to connect the famous Ja-
cobian Conjecture with the Dixmier conjecture (see [T1], [BK], and [AE]).
There is a striking difference between the zero characteristic and the finite
characteristic cases. While for characteristic zero the center of An is just
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2 A CONJECTURE OF BAVULA ON HOMOMORPHISMS OF THE WEYL ALGEBRA

the ground field and An is infinite-dimensional over the center, when the
characteristic is not zero the center of An is a polynomial ring in 2n gener-
ators and An is a finite-dimensional free module over the center.

A vector space B with two bilinear operations x ·y (a multiplication) and
{x, y} (a Poisson bracket) is called a Poisson algebra if B is a commutative
associative algebra under x · y, B is a Lie algebra under {x, y}, and B sat-
isfies the Leibniz identity: {x, y · z} = {x, y} · z + y · {x, z}.

Here we will be concerned with symplectic (Poisson) algebras PSn. For
each n the algebra PSn is a polynomial algebra F [x1, . . . xn; y1, . . . , yn] with
the Poisson bracket defined by {xi, yj} = δij , {xi, xj} = 0, {yi, yj} = 0,
where δij is the Kronecker symbol and 1 ≤ i, j ≤ n. Hence {f, g} =∑

i(
∂f
∂xi

∂g
∂yi
− ∂f

∂yi

∂g
∂xi

).

To distinguish PSn and An we will write PSn as F{x1, y1, . . . , xn, yn}.
One can think about PSn as a commutative approximation of An (and of
An as a quantization of PSn).

It is clear that PSn is a polynomial algebra with some additional struc-
ture. It is less clear what is An. Of course, we can think about a Weyl
algebra as a factor algebra of a free associative algebra by the ideal I which
corresponds to the relations, but it is not obvious even that 1 6∈ I so the
resulting factor algebra may be the zero algebra.

Lemma on basis. The monomials yj11 x
i1
1 . . . yjnn xinn form a basis P of

An over F .
Proof. Any monomial µ in An (which in this consideration may be the
zero algebra) can be written as a product µ = µ1µ2 . . . µn where µi is a
monomial of xi, yi since different pairs (xj , yj) commute. Furthermore,
since xiyi = yixi + 1 any monomial in xi, yi can be written as a linear
combination of monomials yki x

l
i with coefficients in Z or in Zp depending

on the characteristic of F .
It remains to show that the monomials in P are linearly independent over

F . This can be done by finding a homomorphic image of An in which the
images of monomials from P are linearly independent.

If charF = 0 there is a natural representation of An. Consider ho-
momorphisms Xi and Yj of R = F [y1, . . . , yn] defined by Xi(r) = ∂ r

∂ yi

and Yj(r) = yjr. A straightforward computation shows that α(xi) = Xi,
α(yj) = Yj defines a homomorphism of An into the ring of homomorphisms
of R and that the images of monomials from P are linearly independent.
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Unfortunately this representation is not satisfactory when charF = p 6= 0
because then Xp

i = 0.
Here is a way to remedy the problem. Consider Rn = R[z1, . . . , zn], and

homomorphisms Xi, Yj , and Zk of Rn defined by Xi(r) = ∂ r
∂ yi

, Yj(r) = yjr

and Zk(r) = zkr for r ∈ Rn. Since Zk commute with Xi, Yj , and Zl, if

we replace Xi by X̂i = Xi + Zi then [X̂i, Yj ] = [Xi, Yj ] and [X̂i, X̂j ] = 0.

Now, for σ =
∑
fijY

j1
1 X̂i1

1 . . . Y jn
n X̂in

n we have σ(1) =
∑
fijy

j1
1 z

i1
1 . . . yjnn zinn ,

which is zero only if all fij = 0. (Here i and j are multi-indices as usual.) �

Let us call the presentation of an element a ∈ An through the basis P
standard. Further we will use only the standard presentations of elements
of An. So An is isomorphic to a corresponding polynomial ring as a vector
space.

Remark 1. An is a domain (does not have zero divisors). To see this
consider a degree-lexicographic ordering of monomials in P first by the total
degree and then by y1 >> x1 >> y2 >> x2 . . . >> yn >> xn. Then the
commutation relations of An give |fg| = |f ||g|| where |h| for h ∈ An \ 0
denotes the largest monomial appearing in h. �

If char(F ) = 0 then BC is very easy to prove (and is well-known) both for
An and PSn. Suppose that ϕ has a non-zero kernel. Let us take a non-zero
element in the kernel of ϕ of the smallest total degree deg possible. It is
clear that deg(ab) = deg(a)+deg(b) for a, b ∈ An because of the commuta-
tion relations. Consider PSn first. If Λ is a “minimal” element of the kernel
then {xi,Λ} = ∂Λ

∂yi
and {yi,Λ} = − ∂Λ

∂xi
should be identically zero because

of the minimality of Λ. So ∂Λ
∂yi

= 0 and ∂Λ
∂xi

= 0 for all i. If char(F ) = 0

this means that Λ ∈ F . But our homomorphism is over F , so Λ = 0. A
similar proof works for An where the elements [xi,Λ] and [yi,Λ] should be
identically zero which again shows that Λ = 0.

From now on we assume that char(F ) = p 6= 0.

Let us start with purely computational observations.
A straightforward computation shows that [ab, c] = [a, c]b+a[b, c]. There-

fore [xk+1
1 , y1] = [xk1 , y1]x1 + xk1 [x1, y1] and since [x1, y1] = 1 induction on k

gives [xk1 , y1] = kxk−1
1 . Similarly, [x1, y

k
1 ] = kyk−1

1 and the index 1 can be
replaced by any i ∈ {1, 2, . . . , n}.

Denote [a, b] by ada(b). We will use that adp
a(B) = adap(b). In order to

prove it observe that ada(b) = (al−ar)(b) where al and ar are the operators
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of left and right multiplication by a. It is clear that al and ar commute. So
adp

a(b) = (al − ar)p(b) = (apl − apr)(b) = adap(b).

Lemma on center. (a) The center Z(An) ofAn = F [x1, . . . xn; y1, . . . , yn]
is the polynomial ring F [xp1, . . . x

p
n; yp1 , . . . , y

p
n].

(b) The Poisson center of PSn = F{x1, . . . xn; y1, . . . , yn} is the polynomial
ring F [xp1, . . . x

p
n; yp1 , . . . , y

p
n].

Proof. (a) Consider xp1. It is clear from the definition of An that xp1 com-
mutes with all generators with a possible exception of y1. As we observed
above, [x1, y1] = 1 implies [xk1 , y1] = kxk−1

1 . So [xp1, y1] = pxp−1
1 = 0 and

xp1 is in the center of An. Similarly all xpj and ypj are in the center and

Z(An) ⊇ E where E = F [xp1, . . . x
p
n; yp1 , . . . , y

p
n].

Any element a ∈ An can be written as a =
∑
ci,jy

j1
1 x

i1
1 . . . yjnn xinn = a0+σ

where 0 ≤ is < p and 0 ≤ js < p, ci,j ∈ E, a0 ∈ E, and σ is the sum of all
monomials of a which do not belong to E. If a ∈ Z(An) then [x1, a] = 0.

Now, [x1, y
j1
1 x

i1
1 . . . yjnn xinn ] = [x1, y

j1
1 ]xi11 . . . yjnn xinn = j1y

j1−1
1 xi11 . . . yjnn xinn

and we have similar formulae when x1 is replaced by any xi or yj . So if one
of the monomials in σ is not zero we can take the commutator of a with
an appropriate xi or yj and obtain a non-trivial linear dependence between
monomials of P contrary to the Lemma on basis.
(b) An element a belongs to the Poisson center Z(A) of a Poisson algebra

A if {a, b} = 0 for all b ∈ A. If f ∈ Z(PSn) then ∂f
∂xi

= {f, yi} = ∂f
∂yi

=

{xi, f} = 0 for all i which is possible only if f ∈ F [xp1, . . . x
p
n; yp1 , . . . , y

p
n]. �

Nousiainen Lemma. Let ϕ be a homomorphism of An or PSn corre-
spondingly. Then (a) An = Z(An)[ϕ(x1), . . . ϕ(xn); ϕ(y1), . . . , ϕ(yn)];
(b) PSn = Z(PSn)[ϕ(x1), . . . ϕ(xn); ϕ(y1), . . . , ϕ(yn)].
Proof. (a) Let E = F [xp1, . . . x

p
n; yp1 , . . . , y

p
n]. From the Lemma on center

Z(An) = E. The algebra An is a finite-dimensional module over E since

any element a ∈ An can be written as a =
∑
ci,jy

j1
1 x

i1
1 . . . yjnn xinn where

0 ≤ is < p, 0 ≤ js < p, and ci,j ∈ E. Let K = F (xp1, . . . x
p
n; yp1 , . . . , y

p
n)

be the field of fractions of E and let Dn = K[x1, . . . xn; y1, . . . , yn]. Alge-
bra Dn is a skew-field since Dn is a finite-dimensional vector space over K
and Dn does not have zero divisors according to Remark 1. (Recall that

xpi , y
p
j ∈ K, so any f ∈ Dn satisfies a non-zero relation

∑N
i=0 kif

i = 0

where ki ∈ K and N ≤ p2n.)

The monomials yj11 x
i1
1 . . . yjnn xinn , where 0 ≤ is < p, 0 ≤ js < p, are

linearly independent over K. Indeed, if Λ =
∑
ci,jy

j1
1 x

i1
1 . . . yjnn xinn = 0
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where ci,j ∈ K then [xm,Λ] = [ym,Λ] = 0 and we can obtain from a non-
trivial dependence Λ a “smaller” one. So we can invoke induction on, e. g.
the sum of the total degrees of monomials in Λ.

Since any element a ∈ Dn can be written as a =
∑
ci,jy

j1
1 x

i1
1 . . . yjnn xinn

where 0 ≤ is < p, 0 ≤ js < p, and ci,j ∈ K, the dimension of Dn over K is
p2n .

Consider now monomials vj11 u
i1
1 . . . vjnn uinn where ui = ϕ(xi), vj = ϕ(yj),

0 ≤ is < p, and 0 ≤ js < p. Let us check that they are also linearly
independent over K. If Λ =

∑
ci,jv

j1
1 u

i1
1 . . . vjnn uinn = 0 then [um,Λ] =

[vm,Λ] = 0 and, since the commutation relations are the same as above, we
obtain from a non-trivial dependence Λ a “smaller” one.

Since there are exactly p2n of these monomials, they also form a basis
of Dn over K and any element a ∈ An ⊂ Dn can be written as a =∑
ci,jv

j1
1 u

i1
1 . . . vjnn uinn where ci,j ∈ K.

It remains to show that all ci,j ∈ E. Order the monomials vj11 u
i1
1 . . . vjnn uinn

degree-lexicographically as in Remark 1. Let µ = vj11 u
i1
1 . . . vjnn uinn be the

largest monomial. Then adin
vnadjn

un
. . . adi1

v1adj1
u1

(a) = (−1)I
∏n

m=1(im)!(jm)!ci,j,

where I =
∑n

m=1 im, belongs to An. Since (−1)I
∏n

m=1(im)!(jm)! 6= 0 we
conclude that ci,j ∈ An

⋂
K = E, replace a by a − ci,jµ, and finish by in-

duction on the number of monomials of a.
(b) Let Tn be the field of rational functions F (x1, . . . xn; y1, . . . , yn) en-

dowed with the same bracket as PSn: {f, g} =
∑

i(
∂f
∂xi

∂g
∂yi
− ∂f

∂yi

∂g
∂xi

). Then

Tn becomes a Poisson algebra and we can think of PSn as a subalgebra
of Tn. It is clear that Z(Tn) = F (xp1, . . . x

p
n; yp1 , . . . , y

p
n) and that Tn is a

p2n-dimensional vector space over Z(Tn).

Denote ui = ϕ(xi), vi = ϕ(yi). To show that the monomials vj11 u
i1
1 . . . vjnn uinn

where 0 ≤ is < p and 0 ≤ js < p are linearly independent over Z(Tn) we,

as above, can consider a “minimal” relation Λ =
∑
ci,jv

j1
1 u

i1
1 . . . vjnn uinn = 0

and get “smaller” relations by taking {um,Λ} and {vm,Λ}.
If a ∈ PSn is presented as a =

∑
ci,jv

j1
1 u

i1
1 . . . vjnn uinn where 0 ≤ is < p,

0 ≤ js < p, and ci,j ∈ Z(Tn) then all ci,j ∈ Z(PSn); to see this just replace,
in the considerations above, adz by Adz defined by Adz(b) = {z, b}. �

Corollary. There are no homomorphisms from An into An−1.
Proof. Assume that we have a homomorphism φ : An → An−1. Consider
images ui = φ(xi) and vi = φ(yi). According to Nousiainen Lemma An−1 is
a vector space over the center of An−1 with a basis consisting of monomials

vj11 u
i1
1 . . . v

jn−1

n−1 u
in−1

n−1 , 0 ≤ is < p, 0 ≤ js < p. Therefore un and vn are in
the center of An−1 and hence commute with each other. �
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Remark 2. This Lemma is similar to a lemma from Pekka Nousiainen’s
PhD thesis (Pennsylvania State University, 1981) which was never published
(see [BCW]). Nousiainen proved his Lemma in a commutative setting for a
Jacobian set of polynomials, i. e. he proved that if z1, . . . , zn ∈ F [y1, . . . , yn]
and the Jacobian J(z1, . . . , zn) = 1 then F [y1, . . . , yn] = F [yp1 , . . . , y

p
n; z1, . . . , zn].

Hence F [y1, . . . , yn] = F [yP1 , . . . , y
P
n ; z1, . . . , zn] where P = pm and m is any

natural number. Indeed, if say y1 =
∑
ciz

i1
1 . . . zinn where ci ∈ F [yp1 , . . . , y

p
n]

then yp1 =
∑
cpi (zi11 . . . zinn )p and cpi ∈ F [yp

2

1 , . . . , yp
2

n ].
For the same reason PSn = Z(PSn)P [ϕ(x1), . . . ϕ(xn); ϕ(y1), . . . , ϕ(yn)].

But even for A1 the situation is different. Take e. g. u = x, v = y2x − y
when p = 2. Then A1 6= F [x4, y4;u, v]. Indeed, u2 = x2, v2 = y4x2 and
D1 6= F (x4, y4)[u, v] since u2 and v2 are linearly dependent over F (x4, y4).

This difference between An and PSn is the reason for BC to be correct
for PSn and wrong for An.

The Nousiainen Lemma for Weyl algebras is proved in [T2] and [AE]. �

Theorem 1. BC is true for Poisson algebras PSn.
Proof. In the Nousiainen Lemma we proved that PSn = Z(PSn)[u1, . . . un; v1, . . . , vn]

where ui = ϕ(xi), vi = ϕ(yi). So a =
∑
ci,jv

j1
1 u

i1
1 . . . vjnn uinn where ci,j ∈

Z(PSn) = F [xp1, . . . x
p
n; yp1 , . . . , y

p
n] for any a ∈ PSn. Therefore

ap =
∑

cpi,jv
pj1
1 upi11 . . . vpjnn upinn where cpi,j ∈ F [xp

2

1 , . . . , x
p2

n ; yp
2

1 , . . . , yp
2

n ].

Hence
F [xp1, . . . , x

p
n; yp1 , . . . , y

p
n] ⊂ F [xp

2

1 , . . . , x
p2

n ; yp
2

1 , . . . , yp
2

n ][up1, . . . , u
p
n; vp1 , . . . , v

p
n]

and a =
∑
di,jv

j1
1 u

i1
1 . . . vjnn uinn where

di,j ∈ F [xp
2

1 , . . . x
p2

n ; yp
2

1 , . . . , yp
2

n ][up1, . . . u
p
n; vp1 , . . . , v

p
n].

So PSn = F [xp
2

1 , . . . , x
p2

n ; yp
2

1 , . . . , yp
2

n ][u1, . . . , un; v1, . . . , vn]. By iterat-
ing this process we will get that PSn = F [xP1 , . . . x

P
n ; yP1 , . . . , y

P
n ][u1, . . . , un; v1, . . . , vn]

where P = pm for any positive integer m.
It is clear that uPi , v

P
j ∈ F [xP1 , . . . , x

P
n ; yP1 , . . . , y

P
n ] so PSn is spanned

over F [xP1 , . . . , x
P
n ; yP1 , . . . , y

P
n ] by monomials vj11 u

i1
1 . . . , vjnn uinn where 0 ≤

is < P, 0 ≤ js < P . Of course, PSn is spanned over F [xP1 , . . . x
P
n ; yP1 , . . . , y

P
n ]

by monomials yj11 x
i1
1 . . . yjnn xinn where 0 ≤ is < P, 0 ≤ js < P and these

monomials are linearly independent over F [xP1 , . . . x
P
n ; yP1 , . . . , y

P
n ].

So F [x1, . . . xn; y1, . . . , yn] is a free module over F [xP1 , . . . x
P
n ; yP1 , . . . , y

P
n ]

of dimension P 2n.
If ϕ is not an injection then there is a linear dependence over F between

monomials vj11 u
i1
1 . . . vjnn uinn where 0 ≤ is < P, 0 ≤ js < P provided P is

sufficiently large. But this is impossible since these monomials are linearly
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independent over F [xP1 , . . . x
P
n ; yP1 , . . . , y

P
n ]. �

We prove now using Gelfand-Kirillov dimension that a homomorphism
of A1 into An is an embedding. Here is a definition of the Gelfand-Kirillov
dimension (GKdim) suitable for our purpose. Let R be a finitely-generated
associative algebra over F : R = F [r1, . . . , rm]. Consider a free associative
algebra Fm = F 〈z1, . . . , zm〉 and linear subspaces Fm,N of all elements of
Fm with total degree at most N . Let α be a homomorphism of Fm onto
R defined by α(zi) = ri and let RN = α(Fm,N ). Each RN is a finite-
dimensional vector space (over F ); denote dN = dim(RN ).

GKdim(R) = limN→∞
ln(dN )

ln(N)
.

Though this definition uses a particular system of generators, it is pos-
sible to prove that GKdim(R) does not depend on such a choice (see [GK]
or [KL]). It is not difficult to show that in the commutative case Gelfand-
Kirillov dimension coincides with the transcendence degree.

Lemma on GK-dimension. Let R = F [z1, . . . , zm] be a ring of poly-
nomials. If a, b ∈ R are algebraically dependent then GKdim(S) ≤ 1 for
any finitely generated subalgebra S ⊂ A = F [a, b].
Proof. If a, b ∈ F then F [a, b] = F and any subalgebra of A is F . So
in this case GKdim(S) = 0. Assume now that a 6∈ F , i. e. deg(a) > 0.
If deg(b) = 0 then A = F [a] and dN = N + 1 where dN = dim(AN ),
so GKdim(A) = 1. Let S be a subalgebra of A generated by a1, . . . , am.
Then ai = qi(a) where qi are polynomials. Assume that degrees of all these
polynomials do not exceed d. Therefore a polynomial g(a1, . . . , am) of the
total degree N can be rewritten as a polynomial in a of degree at most dN .
Hence N < dN ≤ dN + 1 if any of ai is not in F and GKdim(S) = 1. If all
ai ∈ F then GKdim(S) = 0.

Now, let deg(b) > 0. Since a and b are algebraically dependent, Q(a, b) =
0 for a non-zero polynomial Q. Order monomials aibj by total degree i+ j
and then lexicographically by a >> b. If µ = akbl is the largest monomial
in Q we can write µ = Q1(a, b) where all monomials of Q1 are less than
µ. So we can replace any monomial ν = aibj where i ≥ k, j ≥ l by a
linear combination of monomials which are less than ν. Hence any c ∈ A
of the total degree at most N can be written as a linear combination of
monomials aibj where i + j ≤ N and either i < k or j < l. There are less
than (k+ l)(N+1) and more than N monomials satisfying these properties.
Therefore N < dN < (k+l)(N+1) and GKdim(A) = 1. If S is a subalgebra
of A generated by a1, . . . , am then ai = qi(a, b) where qi are polynomials
of total degrees bounded by some d. If we take a polynomial g(a1, . . . , am)
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of total degree N then g(a1, . . . , am) can be rewritten as a polynomial in a
and b of degree at most dN . Therefore N < dN ≤ (k+ l)(dN + 1) if any of
ai is not in F and GKdim(S) = 1. If all ai ∈ F then GKdim(S) = 0. �

Denote by deg the total degree function on An and by a the element of
A which is deg homogeneous and such that deg(a − a) < deg(a). We will
refer to a as the leading form of a. From the commutation relations in An

it follows that ab = ba and that deg([a, b]) < deg(ab).
We will think about leading forms not as elements of An but rather as

commutative polynomials. Then ab = ab = ba.

Lemma on dependence. Let a and b be algebraically dependent non-
zero homogeneous polynomials and q = deg(a), r = deg(b). Then ar and bq

are proportional, i. e. there exists an f ∈ F so that ar − fbq = 0.
Proof. The polynomials a and b are algebraically dependent, so there is a
non-zero polynomial Q for which Q(a, b) =

∑
i,j fija

ibj = 0. Since a and b
are homogeneous we may assume that qi+ rj is the same for all monomials
of Q. Indeed, any Q can be presented as Q =

∑
iQk where Qk are q, r-

homogeneous. Then either Qk(a, b) = 0 or deg(Qk(a, b)) = k and different
components cannot cancel out.

Therefore over an algebraic closure F of F we can writeQ = f0a
kbl
∏

i(a
r′−

fib
q′) where fi ∈ F , r′ = r

d , q
′ = q

d , and d is the greatest common divisor of

r and q. Hence ar
′−fibq

′
= 0 for some fi ∈ F . But then ar

′
b−q

′ ∈ F since it
is a constant rational function defined over F and arb−q = (ar

′
b−q

′
)d ∈ F . �

Lemma on independence. Let ϕ be a homomorphism of A1 into An.
Then the image of A1 contains two elements with algebraically independent
leading forms.
Proof. Let u = ϕ(x) and v = ϕ(y) where x and y are generators of A1 and
let B = F [u, v] be the image of A1 in An. If u and v are independent, we are
done. If not, then by Lemma on dependence there exists a pair of relatively
prime natural numbers (q, r) and f ∈ F such that uq = fvr. Either q or r
is not divisible by p. For arguments sake assume that it is q.

We can find k for which kp + 1 ≡ 0 (mod q), f1 ∈ F and a positive

integer s so that ukp+1 = f1vs. Let us replace the pair (u, v) by the pair
(u1 = ukp+1 − f1v

s, v1 = v). The commutator [u1, v1] = ukp is a non-zero
element of the center Z(B) of B. If u1 and v1 are independent we are done,
otherwise repeat the step above to get (u2, v2), etc.. We claim that after a
finite number of steps we produce a pair of elements of B with independent
leading forms.
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Consider a function def(a, b) = deg(ab)− deg([a, b]) on An. Let us check
that def(ui+1, vi+1) < def(ui, vi). We will do it for the first step since the
computations are the same for every step.

Since ukp+1 = f1vs we see that deg(u1) < (kp+1) deg(u). So def(u1, v1) =
deg(u1v1)−deg([ukp+1−fvr, v]) = deg(u1)+deg(v)−kpdeg(u)−deg([u, v])) <
deg(u)+deg(v)−deg([u, v] = def(u, v) since [ukp+1−fvr, v] = ukp[u, v] and
deg(u1) < (kp+ 1) deg(u).

By definition, def(a, b) > 0 if both a and b are not zero, so after at most
def(u, v) steps we either get a pair with zero element or a pair U, V ∈ B
with independent U and V . Since [u, v] = 1 the pair we start with does
not contain zero. Similarly, since [ui, vi] 6= 0 we cannot get a pair with zero
element. �

We can now see that GKdim(B) ≥ 2. Indeed, U and V are “polynomi-
als” of u and v and we may assume that the degrees of these polynomials
are at most d. Then the space of all polynomials in u, v of degree at most
N contains all polynomials in U, V of degree at most N

d . Since U and V are

algebraically independent the leading forms U iV j are linearly independent
over F and hence U iV j are linearly independent over F . There are about
N2

2d2 of these monomials with i + j ≤ N
d (exactly

(
[ Nd ]+2

2

)
where [Nd ] is the

integral part of N
d ). So the dimension dN > N2

2d2 and GKdim(B) ≥ 2.

Theorem 2. Let ϕ be a homomorphism of A1 into An. Then ϕ is an
embedding.
Proof. Let A1 = F [x; y] and u = ϕ(x), v = ϕ(y). If ϕ has a non-zero kernel
take an element a in the kernel of smallest total degree possible. Since both
[x, a] and [y, a] are also in the kernel of ϕ and have smaller total degrees,
a ∈ Z(A1) = F [xp, yp]. Therefore up and vp are algebraically dependent
and by Lemma on GK-dimension GKdim(F [up, vp]) ≤ 1 (recall that up

and vp commute). But GKdim(Z(B)) = GKdim(B) for B = F [u, v]. In-
deed, B =

∑
uivjZ(B) where 0 ≤ i, j < p by Lemma on center. So

dN (B) ≤ p2dN
p

(Z(B)) and dN (B) ≥ dN
p

(Z(B)). We showed above that

GKdim(B) ≥ 2. So up and vp are algebraically independent and the kernel
of ϕ consists of zero only. �

Theorem 2 cannot be extended to A2. Take z = x1 + yp−1
1 x2, y1, y2.

Then [z, y1] = 1, [z, y2] = yp−1
1 , and [zp, y2] = adp

z(y2) = adp−1
z (yp−1

1 ) = (p−
1)! = −1. For u1 = z+ zpyp−1

1 , v1 = y1; u2 = y2, v2 = zp the commutation
relations of A2 are satisfied. So φ which is defined by φ(xi) = ui and φ(yi) =
vi is a homomorphism of A2. If B = φ(A2) then B = F [u1, u2; v1, v2] =
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F [z, y1, y2]. Hence up1 ∈ Z(B) and up1 ∈ Z(F [z, y1]) = F [zp, yp1 ] since u1 ∈
F [z, y1]. But up1 should commute with u2 = y2. Therefore up1 ∈ F [zp

2

, yp1 ] =
F [vp2 , v

p
1 ], up1, v

p
1 , v

p
2 are algebraically dependent, and φ has a non-zero

kernel.
It is an exercise to check that GKdim(B) = 3. On the other hand,

GKdim(A2) = 4 since dN =
(
N+2n

2n

)
for An which gives GKdim(An) = 2n.

A question about possible GK-dimensions of images of An under homo-
morphisms seems reasonable in this setting because clearly the size of the
kernel is large when the size of the image is small. Say, GKdim(ϕ(An)) ≤ 2n
and if ϕ is an injection then GKdim(ϕ(An)) = 2n.

Theorem 3. GKdim(ϕ(An)) can be n + i where i = 1, 2, . . . , n for a
homomorphism ϕ of An into An.
Proof. Denote ϕ(An) by B and by ui = ϕ(xi), vi = ϕ(yi). It is suf-
ficient to show that GKdim(B) = n + 1 is possible for any n because
combining u1, . . . , um; v1, . . . , vm of an appropriate map of Am to Am with
xm+1, . . . , xn; ym+1, . . . , yn we will get an image of An of GK-dimension
m+ 1 + 2(n−m).

Now we shall find ϕ such that GKdim(B) = n+ 1.
Consider elements z0,0 = 0, zm,0 = xm − yp−1

m zm−1,0 for m = 1, . . . , n,

and zm,i = zp
i

m,0. Then [zi,0, yi] = 1, [zi−k,0, yi] = 0 and [zi−k,0, xi] = 0

if k > 0, and [zi,0, zj,0] = 0. Therefore [zk,i, zm,j ] = 0. We can get a
relation between zi,j using the equality (yx)p − yx = ypxp if [x, y] = 1
(observe that adyx = ad(yx)p). Take ymzm,0 = ymxm − ypmzm−1,0. Then
the summands in the right side commute and (ymzm,0)p = (ymxm)p −
yp

2

m z
p
m−1,0. So zpm,0 = y−pm [(ymxm)p − yp

2

m z
p
m−1,0 − ymxm + ypmzm−1,0] =

y−pm [ypmx
p
m − yp

2

m z
p
m−1,0 + ypmzm−1,0] = zm−1,0 − yp(p−1)

m zpm−1,0 + xpm, i. e.

zm,1 = zm−1,0 − yp(p−1)
m zm−1,1 + xpm. Since all summands in the right side

of this equality commute

zm,i+1 = zm−1,i − yp
i+1(p−1)

m zm−1,i+1 + xp
i+1

m

and

zm−1,i = zm,i+1 + yp
i+1(p−1)

m zm−1,i+1 − xp
i+1

m .

Then by induction we can prove that

zm−1,i =

m−i−2∑
k=0

cm−1,i,kzm,i+1+k + cm−1,i
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and that

zm−j,i =

m−i−j−1∑
k=0

cm−j,i,kzm,i+j+k + cm−j,i

where ci,j , ci,j,k ∈ Z(An). The sums are finite because zm,m ∈ Z(An)
(can be proved by induction on m starting with z0,0 = 0 since zm,m =

zm−1,m−1 − yp
m(p−1)

m zm−1,m + xp
m

m ).
Now we can show that all ci,j,k ∈ F [yp1 , . . . , y

p
2 ].

Since [zm,i, yj ] = [zm−1,i−1, yj ] − yp
i(p−1)

m [zm−1,i, yj ], we can deduce by
induction onm that [zm,i, yj ] is zero if j > m−i, one if j = m−i, and belongs

to F [yp1 , . . . , y
p
n] if j < m− i. Since zm−j,i =

∑m−i−j−1
k=0 cm−j,i,kzm,i+j+k +

cm−j,i we have [zm−j,i, yl] =
∑m−i−j−1

k=0 cm−j,i,k[zm,i+j+k, yl]; this allows
using l = m− j − i, . . . , 1 to check that all cm−j,i,k ∈ F [yp1 , . . . , y

p
n].

All these computations were done to confirm that

zm,0 =

m−1∑
k=0

dm,kzn,n−m+k + dm

where dm ∈ Z(An) and dm,k ∈ F [yp1 , . . . , y
p
n].

Recall that xm = zm,0 + yp−1
m zm−1,0 and so

xm =

m−1∑
k=0

dm,kzn,n−m+k + dm + yp−1
m (

m−2∑
k=0

dm−1,kzn,n−m+1+k + dm−1).

Therefore

um = xm − dm − yp−1
m dm−1 ∈ B = F [y1, . . . , yn; zn,0].

Finally, u1, . . . , un; y1, . . . , yn define a homomorphism of An into B and
since any monomial in B can be written as yj11 . . . yjnn zin,0, the Theorem is
proved. �

By looking at ϕ(F [x1, . . . , xn]) it is possible to show that GKdim(ϕ(An)) ≥
n. This and Theorem 2 suggest the following

Conjecture. GKdim(ϕ(An)) > n.
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cerca Matemàtica) in Bellaterra, Spain for the hospitality during the work
on this project.

References



12A CONJECTURE OF BAVULA ON HOMOMORPHISMS OF THE WEYL ALGEBRA

[AE] Adjamagbo, Pascal Kossivi; van den Essen, Arno A proof of the
equivalence of the Dixmier, Jacobian and Poisson conjectures. Acta Math.
Vietnam. 32 (2007), no. 2-3, 205–214.

[BCW] Bass, Hyman; Connell, Edwin H.; Wright, David The Jacobian
conjecture: reduction of degree and formal expansion of the inverse. Bull.
Amer. Math. Soc. (N.S.) 7 (1982), no. 2, 287–330.

[BK] Belov-Kanel, Alexei; Kontsevich, Maxim The Jacobian conjecture
is stably equivalent to the Dixmier conjecture. Mosc. Math. J. 7 (2007),
no. 2, 209–218, 349.
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