Certain Additive Maps on *m*-Power Closed Lie Ideals

Kun-Shan Liu

(Based on a joint work with T.-K. Lee)

National Taiwan University, Taiwan

2011.07.15

- *R* is always a prime ring, not necessarily with an identity.
- Z(R): the center of R.
- Q_{ℓ} : the left Martindale quotient ring of R.
- C: the extended centroid of R.

•
$$d \colon R \to R$$
 is a derivation if
 $d(x+y) = d(x) + d(y)$ and
 $d(xy) = d(x)y + xd(y)$ for all $x, y \in R$.

•
$$d: R \to R$$
 is a derivation if
 $d(x+y) = d(x) + d(y)$ and
 $d(xy) = d(x)y + xd(y)$ for all $x, y \in R$.

• (Inner derivations)

$$d(x) = [a, x] = ax - xa.$$

•
$$d: R \to R$$
 is a derivation if
 $d(x+y) = d(x) + d(y)$ and
 $d(xy) = d(x)y + xd(y)$ for all $x, y \in R$.

• (Inner derivations)

$$d(x) = [a, x] = ax - xa.$$

• An additive map $d \colon R \to R$ is a Jordan derivation if $d(x^2) = d(x)x + xd(x)$ for all

 $x \in R$.

• (Derivations)

$$d(xy) = d(x)y + xd(y).$$

• (Derivations)

$$d(xy) = d(x)y + xd(y).$$

• (Jordan derivations)

$$d(x^2) = d(x)x + xd(x).$$

• (Derivations)

$$d(xy) = d(x)y + xd(y).$$

• (Jordan derivations)

$$d(x^2) = d(x)x + xd(x).$$

Theorem 1 (Herstein)

R is a prime ring of $char R \neq 2$. Then any Jordan derivation is a derivation.

Left derivations

Left derivations

• (Left derivations) d(xy) = xd(y) + yd(x).

Left derivations

$$d(xy) = xd(y) + yd(x).$$

Proposition 2

R is a prime ring with a nonzero left derivation.

Then R is commutative.

Jordan Left derivations

Jordan Left derivations

• (Jordan left derivations)

$$d(x^2) = 2xd(x)$$

Jordan Left derivations

• (Jordan left derivations) $d(x^2) = 2xd(x)$

Theorem 3 (Vukman and Brešar)

R is a prime ring of $char(R) \neq 2, 3$. If *R* admits a nonzero Jordan left derivation. Then *R* is commutative.

 An additive subgroup L of R is called a Lie ideal if [L, R] ⊆ L.

- An additive subgroup L of R is called a Lie ideal if [L, R] ⊆ L.
- $d(u^2) = d(u)u + ud(u)$ for all $u \in L$.

•
$$d(u^2) = 2ud(u)$$
 for all $u \in L$.

 An additive subgroup L of R is called a Lie ideal if [L, R] ⊆ L.

•
$$d(u^2) = d(u)u + ud(u)$$
 for all $u \in L$.

•
$$d(u^2) = 2ud(u)$$
 for all $u \in L$.

Definition 4

For a positive integer m > 1, a Lie ideal L of R is called **m-power closed** if $u^m \in L$ for all $u \in L$.

Theorem 5 (Awtar)

Let R be a prime ring of $char(R) \neq 2$ and L be a 2-power closed Lie ideal of R. If $d: R \rightarrow R$ is an additive map and is a Jordan derivation on L.

Then d is a derivation on L.

Theorem 6 (Ashraf, Rehman and Ali)

Let R be a prime ring of $char(R) \neq 2$ and L be a noncentral 2-power closed Lie ideal of R. If d is an additive map satisfying $d(u^2) = 2ud(u)$ for all $u \in L$. Then d = 0.

Main Theorem 1

Theorem 7 (Lee and Liu)

Let R be a prime ring with char(R) = 0 or a prime p, where p > 2(m - 1) > 1. Suppose that L is a noncentral m-power closed Lie ideal of R.

Theorem 7 (Lee and Liu)

Let R be a prime ring with char(R) = 0 or a prime p, where p > 2(m - 1) > 1. Suppose that L is a noncentral m-power closed Lie ideal of R. If $d: L \to R$ is an additive map such that $d(u^m) = mu^{m-1}d(u)$ for all $u \in L$, then d = 0.

Theorem 7 (Lee and Liu)

Let R be a prime ring with char(R) = 0 or a prime p, where p > 2(m - 1) > 1. Suppose that L is a noncentral m-power closed Lie ideal of R. If $d: L \to R$ is an additive map such that $d(u^m) = mu^{m-1}d(u)$ for all $u \in L$, then d = 0.

Theorem 8

Let R be a prime ring with char(R) = 0 or a prime p, where p > m > 1. Suppose that L is a non-central m-power closed Lie ideal of R.

Theorem 8

Let R be a prime ring with char(R) = 0 or a prime p, where p > m > 1. Suppose that L is a non-central m-power closed Lie ideal of R. Then L contains a nonzero ideal of R except when $\dim_C RC = 4$, m is odd, and $u^{m-1} \in Z(R)$ for all $u \in L$.

Example 1

F is a field and m>0 is odd. $R \stackrel{\mathrm{def}}{=} \mathrm{M}_2(F)$ and L = [R,R].

Example 1

F is a field and m > 0 is odd. $R \stackrel{\text{def}}{=} M_2(F)$ and L = [R, R].

Then $u^2 \in Z(R)$ for all $u \in L$, and hence $u^m \in L$,

but L contains no nonzero ideals of R.

Example 1

F is a field and m > 0 is odd. $R \stackrel{\text{def}}{=} M_2(F)$ and L = [R, R].

Then $u^2 \in Z(R)$ for all $u \in L$, and hence $u^m \in L$,

but L contains no nonzero ideals of R.

Example 2

Let F be a field of characteristic 2 and let $R \stackrel{\text{def}}{=} M_2(F)$ and L = [R, R]. Then $\dim_k R = 4$, $u^2 \in L$ for all $u \in L$ but L contains no nonzero ideals of R.

Proof

Lemma 9

Suppose that $d: I \to R$ is an additive map, where I is a nonzero ideal of R. If $d(x^m) = mx^{m-1}d(x)$ for all $x \in I$, then d = 0.

Proof

Lemma 9

Suppose that $d: I \to R$ is an additive map, where I is a nonzero ideal of R. If $d(x^m) = mx^{m-1}d(x)$ for all $x \in I$, then d = 0.

Sketch of Proof

Expanding
$$d((x+y)^m) = m(x+y)^{m-1}d(x+y)$$
,

Lemma 9

Suppose that $d: I \to R$ is an additive map, where I is a nonzero ideal of R. If $d(x^m) = mx^{m-1}d(x)$ for all $x \in I$, then d = 0.

Sketch of Proof

Expanding $d((x+y)^m) = m(x+y)^{m-1}d(x+y)$, and using the van der Monde argument and some replacements, $x^{2m-3}(d(x^2) - 2xd(x)) = 0$.

Lemma 9

Suppose that $d: I \to R$ is an additive map, where I is a nonzero ideal of R. If $d(x^m) = mx^{m-1}d(x)$ for all $x \in I$, then d = 0.

Sketch of Proof

Expanding $d((x + y)^m) = m(x + y)^{m-1}d(x + y)$, and using the van der Monde argument and some replacements, $x^{2m-3}(d(x^2) - 2xd(x)) = 0$. By some discussion of functional identities, $d(x^2) - 2xd(x) = 0$.

Lemma 9

Suppose that $d: I \to R$ is an additive map, where I is a nonzero ideal of R. If $d(x^m) = mx^{m-1}d(x)$ for all $x \in I$, then d = 0.

Sketch of Proof

Expanding $d((x + y)^m) = m(x + y)^{m-1}d(x + y)$, and using the van der Monde argument and some replacements, $x^{2m-3}(d(x^2) - 2xd(x)) = 0$. By some discussion of functional identities, $d(x^2) - 2xd(x) = 0$. By Theorem 6, d = 0.

Proposition 10

Suppose that $\dim_C RC = 4$ and that L is a noncentral m-power closed Lie ideal of R such that $u^{m-1} \in Z(R)$ for all $u \in L$, where m is an odd positive integer. If $d: L \to R$ is an additive map such that $d(u^m) = mu^{m-1}d(u)$ for all $u \in L$, then d = 0.

Proof of Theorem 7

Proof of Theorem 7

Sketch of Proof

By Thm. 8, , Lemma 9 and Prop. 10,

By Thm. 8, , Lemma 9 and Prop. 10, L contains a nonzero ideal I such that d(x) = 0 for all $x \in I$.

By Thm. 8, , Lemma 9 and Prop. 10, L contains a nonzero ideal I such that d(x) = 0 for all $x \in I$. For $u \in L$, $d((x + u)^m) = m(x + u)^{m-1}d(x + u)$,

By Thm. 8, , Lemma 9 and Prop. 10, L contains a nonzero ideal I such that d(x) = 0 for all $x \in I$. For $u \in L$, $d((x + u)^m) = m(x + u)^{m-1}d(x + u)$, so $d(u^m) = m(x + u)^{m-1}d(u)$.

By Thm. 8, , Lemma 9 and Prop. 10, L contains a nonzero ideal I such that d(x) = 0 for all $x \in I$. For $u \in L$, $d((x + u)^m) = m(x + u)^{m-1}d(x + u)$, so $d(u^m) = m(x + u)^{m-1}d(u)$. By some computations, d(u) = 0.

•
$$d(x^m) = mx^{m-1}d(x)$$

•
$$d(x^m) = mx^{m-1}d(x) \Rightarrow d(x^m) = x^{m-1}d(x).$$

•
$$d(x^m) = mx^{m-1}d(x) \Rightarrow d(x^m) = x^{m-1}d(x).$$

•
$$d(xy) = xd(y)$$
 for all $x, y \in R$.

•
$$d(x^m) = mx^{m-1}d(x) \Rightarrow d(x^m) = x^{m-1}d(x).$$

•
$$d(xy) = xd(y)$$
 for all $x, y \in R$.

•
$$d(x) = xa$$
 for some $a \in Q_{\ell}$.

•
$$d(x^m) = mx^{m-1}d(x) \Rightarrow d(x^m) = x^{m-1}d(x).$$

•
$$d(xy) = xd(y)$$
 for all $x, y \in R$.

•
$$d(x) = xa$$
 for some $a \in Q_{\ell}$.

•
$$d(x^2) = xd(x)$$
.

•
$$d(x^m) = mx^{m-1}d(x) \Rightarrow d(x^m) = x^{m-1}d(x).$$

•
$$d(xy) = xd(y)$$
 for all $x, y \in R$.

•
$$d(x) = xa$$
 for some $a \in Q_{\ell}$.

•
$$d(x^2) = xd(x)$$
.

Theorem 11 (Zalar)

Let I be a nonzero ideal of R with $char(R) \neq 2$. If $d: I \rightarrow R$ is an additive map such that $d(x^2) = xd(x)$ for all $x \in I$, then d(xy) = xd(y) for all $x \in R$ and $y \in I$.

Main Theorem 2

R be a prime ring with char(R) = 0 or a prime p, where p > 2(m-1) > 1. Suppose that L is a noncentral m-power closed Lie ideal of R.

R be a prime ring with char(R) = 0 or a prime p, where p > 2(m-1) > 1. Suppose that L is a noncentral m-power closed Lie ideal of R. If $d: L \to R$ is an additive map such that $d(u^m) = u^{m-1}d(u)$ for all $u \in L$,

R be a prime ring with char(R) = 0 or a prime *p*, where p > 2(m-1) > 1. Suppose that *L* is a noncentral *m*-power closed Lie ideal of *R*. If $d: L \to R$ is an additive map such that $d(u^m) = u^{m-1}d(u)$ for all $u \in L$, then d(u) = ua for some $a \in Q_\ell$,

R be a prime ring with char(R) = 0 or a prime p, where p > 2(m-1) > 1. Suppose that L is a noncentral m-power closed Lie ideal of R. If $d: L \to R$ is an additive map such that $d(u^m) = u^{m-1}d(u)$ for all $u \in L$, then d(u) = ua for some $a \in Q_{\ell}$, except when $\dim_C RC = 4$, m is odd, and $u^{m-1} \in Z(R)$ for all $u \in L$.

Example 3

 $R = M_2(C)$, where C is a field of char(R) = 0 or a prime p > 2(m-1) > 1, where m is odd.

Example 3

 $R = M_2(C)$, where C is a field of char(R) = 0 or a prime p > 2(m - 1) > 1, where m is odd. L = [R, R] and $d: L \to R$ is a C-linear map satisfying $d(e_{11}) = e_{11} + e_{12}$ and $d(e_{21}) = 0$.

Example 3

 $R = M_2(C)$, where C is a field of char(R) = 0 or a prime p > 2(m-1) > 1, where m is odd. L = [R, R] and $d: L \to R$ is a C-linear map satisfying $d(e_{11}) = e_{11} + e_{12}$ and $d(e_{21}) = 0$. $d(u^m) = u^{m-1}d(u)$ for all $u \in L$, since $u^{m-1} \in C$ for $u \in L$.

Example 3

 $R = M_2(C)$, where C is a field of char(R) = 0 or a prime p > 2(m-1) > 1, where m is odd. L = [R, R] and $d: L \to R$ is a C-linear map satisfying $d(e_{11}) = e_{11} + e_{12}$ and $d(e_{21}) = 0$. $d(u^m) = u^{m-1}d(u)$ for all $u \in L$, since $u^{m-1} \in C$ for $u \in L$. However, d is not of the form $u \mapsto ua$ for some $a \in R$.

Theorem 13 (Liu)

Let R be a prime ring with char(R) = 0 or a prime p, where p > 2(m + n), and m, n be nonnegative integers with $m + n \neq 0$. Suppose that L is a noncentral (m + n + 1)-power closed Lie ideal of R. If $d: L \rightarrow R$ is an additive map such that $d(u^{m+n+1}) = (m + n + 1)u^m d(u)u^n$ for all $u \in L$, then d = 0.

Theorem 14 (Liu)

Let R be a prime ring with char(R) = 0 or a prime p, where p > 2(m + n), and m, n be positive integers.

Suppose that L is a noncentral (m + n + 1)-power closed Lie ideal of R.

If $d: L \to R$ is an additive map such that $d(u^{m+n+1}) = u^m d(u)u^n$ for all $u \in L$,

Theorem 14 (Liu)

Let R be a prime ring with char(R) = 0 or a prime p, where p > 2(m + n), and m, n be positive integers.

Suppose that L is a noncentral (m + n + 1)-power closed Lie ideal of R.

If $d: L \to R$ is an additive map such that $d(u^{m+n+1}) = u^m d(u)u^n$ for all $u \in L$, then $d(u) = \alpha u$ for some $\alpha \in C$, except when $\dim_C RC = 4$, m + n is even, and $u^{m+n} \in Z(R)$ for all $u \in L$.

Thank You.

References I

- [LL] T.-K. Lee and K.-S. Liu, Certain additive maps on m-power closed Lie ideals, Monatsh. Math., to appear.
- [Liu] K.-S Liu Certain additive maps on (m + n + 1)-power closed Lie ideals, Algebra Colloq., to appear.
- M. Ashraf and Ali S. Nadeem-ur-Rehman, On Jordan left derivations of Lie ideals in prime rings, Southeast Asian Bull. Math. 25(3) (2001), 379-382.
- R. Awtar, Lie ideals and Jordan derivations of prime rings, Proc. Amer. Math. Soc. 90(1) (1984), 9-14.
- [3] I.N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110.

- [4] M, Brešar and J. Vukman On left derivations and related mappings,.
 Proc. Amer. Math. Soc. 110(1) (1990), 7-16.
- [5] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin. 32 (1991), 609-614.