Completely bounded disjointness preserving operators between Fourier algebras and their cb-extension

YING-FEN LIN

Department of Applied Mathematics National Dong Hwa University

> ICRA 2011 July 11, 2011

YING-FEN LIN COMPLETELY BOUNDED DISJOINTNESS PRESERVING OPERATORS

Let G be a locally compact group, dx be the Haar measure on G. The Banach space $L^1(G)$ is of integrable functions on G with respect to dx with the convolution product *, i.e.

$$f * g(y) := \int_G f(x)g(x^{-1}y)dx$$
 for $f,g \in L^1(G)$ and $y \in G$.

 $\implies (L^1(G), *)$ is a Banach algebra which has an isometric involution defined by

$$f^*(x) := \Delta_G(x)^{-1}\overline{f(x^{-1})}, f \in L^1(G), x \in G,$$

where Δ_G denotes the modular function on G.

Let G be a locally compact group, dx be the Haar measure on G. The Banach space $L^1(G)$ is of integrable functions on G with respect to dx with the convolution product *, i.e.

$$f*g(y):=\int_{\mathcal{G}}f(x)g(x^{-1}y)dx ext{ for } f,g\in L^1(\mathcal{G}) ext{ and } y\in \mathcal{G}.$$

 $\implies (L^1(G), *)$ is a Banach algebra which has an isometric involution defined by

$$f^*(x) := \Delta_G(x)^{-1}\overline{f(x^{-1})}, f \in L^1(G), x \in G,$$

where Δ_G denotes the modular function on G.

Let G be a locally compact group, dx be the Haar measure on G. The Banach space $L^1(G)$ is of integrable functions on G with respect to dx with the convolution product *, i.e.

$$f * g(y) := \int_G f(x)g(x^{-1}y)dx$$
 for $f,g \in L^1(G)$ and $y \in G$.

 \implies ($L^1(G), *$) is a Banach algebra which has an isometric involution defined by

$$f^*(x) := \Delta_G(x)^{-1}\overline{f(x^{-1})}, f \in L^1(G), x \in G,$$

where Δ_G denotes the modular function on G.

Cohen in 1960 Let G, H be locally compact abelian groups. Let $\varphi : L^1(G) \to M(H)$ be a bounded homomorphism. Then there is a continuous piecewise affine map $\alpha : Y \subseteq \widehat{H} \to \widehat{G}$ such that

$$\varphi u = \begin{cases} u \circ \alpha & \text{on } Y, \\ 0 & \text{otherwise.} \end{cases}$$

Definition of d.p. on the group algebra

Let G, H be locally compact abelian groups. A linear map $\varphi : L^1(G) \to L^1(H)$ is called a *disjointness preserving operator* (*d.p. operator* for short) if

$$f * g = 0 \implies \varphi f * \varphi g = 0.$$

Font and Hernández (1994)

If $\varphi : L^1(G) \to L^1(H)$ is a bijective d.p. operator, then φ is continuous and \widehat{H}, \widehat{G} are homeomorphic.

We associate a map $\hat{\varphi}$ with φ by sending \hat{f} to φf , and denoted by $\hat{\varphi}(\hat{f})$.

If φ is a d.p. map, then we have

$$\hat{g} \cdot \hat{f} = 0$$
 in $\widehat{L^1(G)} \implies \hat{\varphi}(\hat{g}) \cdot \hat{\varphi}(\hat{f}) = 0$ in $\widehat{L^1(H)}$.

Font and Hernández (1994)

If $\varphi : L^1(G) \to L^1(H)$ is a bijective d.p. operator, then φ is continuous and \widehat{H}, \widehat{G} are homeomorphic.

We associate a map $\hat{\varphi}$ with φ by sending \hat{f} to $\widehat{\varphi f}$, and denoted by $\hat{\varphi}(\hat{f})$.

If φ is a d.p. map, then we have

$$\hat{g} \cdot \hat{f} = 0$$
 in $\widehat{L^1(G)} \implies \hat{\varphi}(\hat{g}) \cdot \hat{\varphi}(\hat{f}) = 0$ in $\widehat{L^1(H)}$.

Font and Hernández (1994)

If $\varphi : L^1(G) \to L^1(H)$ is a bijective d.p. operator, then φ is continuous and \widehat{H}, \widehat{G} are homeomorphic.

We associate a map $\hat{\varphi}$ with φ by sending \hat{f} to $\widehat{\varphi f}$, and denoted by $\hat{\varphi}(\hat{f})$.

If φ is a d.p. map, then we have

$$\hat{g} \cdot \hat{f} = 0$$
 in $\widehat{L^1(G)} \implies \hat{\varphi}(\hat{g}) \cdot \hat{\varphi}(\hat{f}) = 0$ in $\widehat{L^1(H)}$.

Positive definite functions

A function $\varphi : G \to \mathbb{C}$ is a *positive definite function* if for all $s_1, \ldots, s_n \in G$, the matrix $[\varphi(s_i^{-1}s_j)]$ is a positive definite matrix in $M_n(\mathbb{C})$.

The *Fourier algebra* A(G) is the closed ideal of B(G) generated by elements with compact support.

• If G is abelian, then

 $A(G)=\{\hat{f}:f\in L^1(\hat{G})\}$ and $B(G)=\{\hat{\mu}:\mu\in M(\hat{G})\}.$

The *Fourier algebra* A(G) is the closed ideal of B(G) generated by elements with compact support.

• If G is abelian, then

 $A(G) = \{\hat{f} : f \in L^1(\hat{G})\}$ and $B(G) = \{\hat{\mu} : \mu \in M(\hat{G})\}.$

The *Fourier algebra* A(G) is the closed ideal of B(G) generated by elements with compact support.

• If G is abelian, then

 $A(G) = \{\hat{f}: f \in L^1(\hat{G})\}$ and $B(G) = \{\hat{\mu}: \mu \in M(\hat{G})\}.$

The *Fourier algebra* A(G) is the closed ideal of B(G) generated by elements with compact support.

• If G is abelian, then

 $A(G) = \{\hat{f} : f \in L^1(\hat{G})\}$ and $B(G) = \{\hat{\mu} : \mu \in M(\hat{G})\}.$

The *Fourier algebra* A(G) is the closed ideal of B(G) generated by elements with compact support.

• If G is abelian, then

 $A(G) = \{\hat{f} : f \in L^1(\hat{G})\}$ and $B(G) = \{\hat{\mu} : \mu \in M(\hat{G})\}.$

- A(G) and B(G) are semi-simple commutative Banach
 *-algebras with pointwise multiplication.
- A(G)^{*} ≅ vN(G), the von Neumann algebra generated by left regular representations of G.
- B(G)^{*} ≅ W^{*}(G), the enveloping von Neumann algebra generated by universal representations.
- A(G) and B(G) are operator spaces given by Effros and Ruan.

- A(G) and B(G) are semi-simple commutative Banach *-algebras with pointwise multiplication.
- A(G)^{*} ≅ vN(G), the von Neumann algebra generated by left regular representations of G.
- B(G)^{*} ≅ W^{*}(G), the enveloping von Neumann algebra generated by universal representations.
- A(G) and B(G) are operator spaces given by Effros and Ruan.

- A(G) and B(G) are semi-simple commutative Banach *-algebras with pointwise multiplication.
- A(G)^{*} ≅ vN(G), the von Neumann algebra generated by left regular representations of G.
- B(G)^{*} ≅ W^{*}(G), the enveloping von Neumann algebra generated by universal representations.
- A(G) and B(G) are operator spaces given by Effros and Ruan.

- A(G) and B(G) are semi-simple commutative Banach *-algebras with pointwise multiplication.
- A(G)^{*} ≅ vN(G), the von Neumann algebra generated by left regular representations of G.
- B(G)^{*} ≅ W^{*}(G), the enveloping von Neumann algebra generated by universal representations.
- A(G) and B(G) are operator spaces given by Effros and Ruan.

- A(G) and B(G) are semi-simple commutative Banach *-algebras with pointwise multiplication.
- A(G)^{*} ≅ vN(G), the von Neumann algebra generated by left regular representations of G.
- B(G)^{*} ≅ W^{*}(G), the enveloping von Neumann algebra generated by universal representations.
- A(G) and B(G) are operator spaces given by Effros and Ruan.

An operator space is linear space V with a matrix norm $\|\cdot\|$ for which

(M1) $\|v \oplus w\|_{m+n} = \max\{\|v\|_m, \|w\|_n\}$ and (M2) $\|\alpha v\beta\|_n \le \|\alpha\|\|v\|_m\|\beta\|$, for all $v \in M_m(V)$, $w \in M_n(V)$ and $\alpha \in M_{n \times m}$, $\beta \in M_{m \times n}$. An operator space is linear space V with a matrix norm $\|\cdot\|$ for which

(M1)
$$\|v \oplus w\|_{m+n} = \max\{\|v\|_m, \|w\|_n\}$$
 and
(M2) $\|\alpha v\beta\|_n \le \|\alpha\|\|v\|_m\|\beta\|$,
for all $v \in M_m(V), w \in M_n(V)$ and $\alpha \in M_{n \times m}, \beta \in M_{m \times n}$.

Definition

Let G, H be locally compact groups. A linear operator $\varphi : A(G) \rightarrow A(H)$ is called a *disjointness preserving operator* if

$$f \cdot g = 0$$
 in $A(G) \implies \varphi f \cdot \varphi g = 0$ in $A(H)$.

d.p. is known as a separating or zero product preserving map.
every homomorphism is a disjointness preserving operator.

Definition

Let G, H be locally compact groups. A linear operator $\varphi : A(G) \rightarrow A(H)$ is called a *disjointness preserving operator* if

$$f \cdot g = 0$$
 in $A(G) \implies \varphi f \cdot \varphi g = 0$ in $A(H)$.

d.p. is known as a separating or zero product preserving map.
every homomorphism is a disjointness preserving operator.

Definition

Let G, H be locally compact groups. A linear operator $\varphi : A(G) \rightarrow A(H)$ is called a *disjointness preserving operator* if

$$f \cdot g = 0$$
 in $A(G) \implies \varphi f \cdot \varphi g = 0$ in $A(H)$.

- d.p. is known as a separating or zero product preserving map.
- every homomorphism is a disjointness preserving operator.

- Abramovich (1983): every lattice homomorphism between Banach lattices is a positive d.p. operator
- for continuous functions, Arendt, Hernández, Jarosz, Kamowitz,...
- Font (1998):

- Abramovich (1983): every lattice homomorphism between Banach lattices is a positive d.p. operator
- for continuous functions, Arendt, Hernández, Jarosz, Kamowitz,...
- Font (1998):

- Abramovich (1983): every lattice homomorphism between Banach lattices is a positive d.p. operator
- for continuous functions, Arendt, Hernández, Jarosz, Kamowitz,...
- Font (1998):

- Abramovich (1983): every lattice homomorphism between Banach lattices is a positive d.p. operator
- for continuous functions, Arendt, Hernández, Jarosz, Kamowitz,...
- Font (1998):

Let \mathcal{A}, \mathcal{B} be operator spaces. A linear map $\mathcal{T} : \mathcal{A} \to \mathcal{B}$ is called *completely bounded* if \mathcal{T} is bounded and

$$||T||_{cb} := \sup\{||T^{(n)}|| : n \in \mathbb{N}\} < \infty,$$

where $T^{(n)}: M_n(\mathcal{A}) \to M_n(\mathcal{B})$ is given by $T^{(n)}([a_{ij}]) = [Ta_{ij}]$.

Let \mathcal{A}, \mathcal{B} be operator spaces.

A linear map $T : \mathcal{A} \to \mathcal{B}$ is called *completely bounded* if T is bounded and

$$\|T\|_{cb} := \sup\{\|T^{(n)}\| : n \in \mathbb{N}\} < \infty,$$

where $T^{(n)}: M_n(\mathcal{A}) \to M_n(\mathcal{B})$ is given by $T^{(n)}([a_{ij}]) = [Ta_{ij}]$.

Theorem (Ilie and Spronk, 2005)

Let G, H be locally compact groups with G amenable, and let $\varphi : A(G) \to B(H)$ be a completely bounded homomorphism. Then there is a continuous piecewise affine map $\alpha : Y \subseteq H \to G$ s.t.

$$\varphi u(h) = \begin{cases} u(\alpha(h)) & \text{if } h \in Y, \\ 0 & \text{otherwise.} \end{cases}$$

Remark:

A group is called *amenable* if there exists left invariant mean on $\ell^{\infty}(G)$.

Theorem (Ilie and Spronk, 2005)

Let G, H be locally compact groups with G amenable, and let $\varphi : A(G) \to B(H)$ be a completely bounded homomorphism. Then there is a continuous piecewise affine map $\alpha : Y \subseteq H \to G$ s.t.

$$\varphi u(h) = \begin{cases} u(\alpha(h)) & \text{if } h \in Y, \\ 0 & \text{otherwise.} \end{cases}$$

Remark:

A group is called *amenable* if there exists left invariant mean on $\ell^{\infty}(G)$.

Theorem (Ilie and Spronk, 2005)

Let G, H be locally compact groups with G amenable, and let $\varphi : A(G) \to B(H)$ be a completely bounded homomorphism. Then there is a continuous piecewise affine map $\alpha : Y \subseteq H \to G$ s.t.

$$\varphi u(h) = \begin{cases} u(\alpha(h)) & \text{if } h \in Y, \\ 0 & \text{otherwise.} \end{cases}$$

Remark:

A group is called *amenable* if there exists left invariant mean on $\ell^{\infty}(G)$.

Let G, H be locally compact groups, $Y \in \Omega_0(H)$. If $\alpha : Y \to G$ is a continuous piecewise affine map and $w \in B(H)$, then the map $\varphi_{w,\alpha} : A(G) \to B(H)$ given by

$$\varphi_{w,\alpha}u(y) = \begin{cases} w(y)u(\alpha(y)) & \text{if } y \in Y, \\ 0 & \text{otherwise} \end{cases}$$

is a completely bounded disjointness preserving operator.

Moreover, we can extend $\varphi_{w,\alpha}$ to a completely bounded d.p. operator $\Phi_{w,\alpha}$ on B(G). If G is amenable, then $\|\Phi_{w,\alpha}\|_{cb} = \|\varphi_{w,\alpha}\|_{cb}$.

Let G, H be locally compact groups, $Y \in \Omega_0(H)$. If $\alpha : Y \to G$ is a continuous piecewise affine map and $w \in B(H)$, then the map $\varphi_{w,\alpha} : A(G) \to B(H)$ given by

$$\varphi_{w,\alpha}u(y) = \begin{cases} w(y)u(\alpha(y)) & \text{if } y \in Y, \\ 0 & \text{otherwise} \end{cases}$$

is a completely bounded disjointness preserving operator.

Moreover, we can extend $\varphi_{w,\alpha}$ to a completely bounded d.p. operator $\Phi_{w,\alpha}$ on B(G). If G is amenable, then $\|\Phi_{w,\alpha}\|_{cb} = \|\varphi_{w,\alpha}\|_{cb}$.

Let G, H be locally compact groups, $Y \in \Omega_0(H)$. If $\alpha : Y \to G$ is a continuous piecewise affine map and $w \in B(H)$, then the map $\varphi_{w,\alpha} : A(G) \to B(H)$ given by

$$\varphi_{w,\alpha}u(y) = \begin{cases} w(y)u(\alpha(y)) & \text{if } y \in Y, \\ 0 & \text{otherwise} \end{cases}$$

is a completely bounded disjointness preserving operator.

Moreover, we can extend $\varphi_{w,\alpha}$ to a completely bounded d.p. operator $\Phi_{w,\alpha}$ on B(G). If G is amenable, then $\|\Phi_{w,\alpha}\|_{cb} = \|\varphi_{w,\alpha}\|_{cb}$.

Let G, H be locally compact amenable groups. If $\varphi : A(G) \rightarrow A(H)$ is a surjective c.b. d.p. operator, then $\varphi = w \cdot \psi_{\alpha}$, where $w \in B(H)$ is invertible and $\psi_{\alpha} : A(G) \rightarrow A(H)$ is a c.b homomorphism induced by a piecewise affine proper map α .

Let G, H be locally compact amenable groups. If $\varphi : A(G) \rightarrow A(H)$ is a surjective c.b. d.p. operator, then

 $\varphi = \mathbf{w} \cdot \psi_{\alpha},$

where $w \in B(H)$ is invertible and $\psi_{\alpha} : A(G) \to A(H)$ is a c.b. homomorphism induced by a piecewise affine proper map α .

Let G, H be locally compact amenable groups. If $\varphi : A(G) \rightarrow A(H)$ is a surjective c.b. d.p. operator, then

 $\varphi = \mathbf{w} \cdot \psi_{\alpha},$

where $w \in B(H)$ is invertible and $\psi_{\alpha} : A(G) \to A(H)$ is a c.b. homomorphism induced by a piecewise affine proper map α .

Corollary

If $\varphi : A(G) \to A(H)$ is a surjective c.b. d.p. operator and if H is connected, then $\|\varphi\|_{cb} = \|w\|_{B(H)}$.

Corollary

If $\varphi : A(G) \to A(H)$ is a surjective c.b. d.p. operator and if H is connected, then $\|\varphi\|_{cb} = \|w\|_{B(H)}$.

Corollary

Each surjective c.b. d.p. operator from A(G) to A(H) has a canonical cb-extension to B(G) whenever G, H are amenable.