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Dedication

It is my great pleasure to join the colleagues from 14 regions:

Australia, Brazil, Canada, Estonia, Germany, Israel, Korea,
Malaysia, Poland, Slovenia, South Africa, USA, Taiwan, Thailand,

in Africa, Asia, Australia, Europe, (North and South) America

to honor Professor Pjek-Hwee Lee on the occasion of his retirement.

In fact, I am also affiliated with the following institutions:

Hong Kong University of Science & Technology (2011 Fulbright Fellow)
Taiyuan University of Technology (Shanxi 100 Talent Program)

Shanghai University, University of Hong Kong (Honorary Professor).
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Preserver problems

Preserver problems concern the characterization of maps on matrices,
operators, or other algebraic objects with special properties.

(Frobenius,1897) A linear map T : Mn →Mn satisfies

det(L(A)) = det(A) for all A ∈Mn

if and only if there are matrices M,N ∈Mn with det(MN) = 1 such
that L has the form

A 7→MAN or A 7→MAtN.

(Dieudonné,1949) Let S be the set of singular matrices. An invertible
linear map L : Mn →Mn satisfies T (S) ⊆ S. if and only if there are
M,N ∈ GLn such that L has the form

A 7→MAN or A 7→MAtN.

Chi-Kwong Li Preserver problems in quantum information science



Preserver problems

Preserver problems concern the characterization of maps on matrices,
operators, or other algebraic objects with special properties.

(Frobenius,1897) A linear map T : Mn →Mn satisfies

det(L(A)) = det(A) for all A ∈Mn

if and only if there are matrices M,N ∈Mn with det(MN) = 1 such
that L has the form

A 7→MAN or A 7→MAtN.

(Dieudonné,1949) Let S be the set of singular matrices. An invertible
linear map L : Mn →Mn satisfies T (S) ⊆ S. if and only if there are
M,N ∈ GLn such that L has the form

A 7→MAN or A 7→MAtN.

Chi-Kwong Li Preserver problems in quantum information science



Preserver problems

Preserver problems concern the characterization of maps on matrices,
operators, or other algebraic objects with special properties.

(Frobenius,1897) A linear map T : Mn →Mn satisfies

det(L(A)) = det(A) for all A ∈Mn

if and only if

there are matrices M,N ∈Mn with det(MN) = 1 such
that L has the form

A 7→MAN or A 7→MAtN.

(Dieudonné,1949) Let S be the set of singular matrices. An invertible
linear map L : Mn →Mn satisfies T (S) ⊆ S. if and only if there are
M,N ∈ GLn such that L has the form

A 7→MAN or A 7→MAtN.

Chi-Kwong Li Preserver problems in quantum information science



Preserver problems

Preserver problems concern the characterization of maps on matrices,
operators, or other algebraic objects with special properties.

(Frobenius,1897) A linear map T : Mn →Mn satisfies

det(L(A)) = det(A) for all A ∈Mn

if and only if there are matrices M,N ∈Mn with det(MN) = 1 such
that L has the form

A 7→MAN or A 7→MAtN.

(Dieudonné,1949) Let S be the set of singular matrices. An invertible
linear map L : Mn →Mn satisfies T (S) ⊆ S. if and only if there are
M,N ∈ GLn such that L has the form

A 7→MAN or A 7→MAtN.

Chi-Kwong Li Preserver problems in quantum information science



Preserver problems

Preserver problems concern the characterization of maps on matrices,
operators, or other algebraic objects with special properties.

(Frobenius,1897) A linear map T : Mn →Mn satisfies

det(L(A)) = det(A) for all A ∈Mn

if and only if there are matrices M,N ∈Mn with det(MN) = 1 such
that L has the form

A 7→MAN or A 7→MAtN.

(Dieudonné,1949) Let S be the set of singular matrices. An invertible
linear map L : Mn →Mn satisfies T (S) ⊆ S. if and only if there are
M,N ∈ GLn such that L has the form

A 7→MAN or A 7→MAtN.

Chi-Kwong Li Preserver problems in quantum information science



There were study and results on matrix pairs preserving

adjacency, i.e., rank(A−B) = 1, partial orders, i.e., A ≤ B,
disjointness / having zero product, say, AB = 0, AB∗ = 0,
[A,B] = AB −BA = 0, {A,B} = AB +BA = 0, etc.

The were also study connected to (Lie) derivations, isometry, effect
algebra, Jordan homorophism, C∗-homomorphisms, etc.

Professor Pjek-Hwee Lee and many other colleagues in the audience have
nice results on this subject.
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Quantum information science

Quantum information science is about the use quantum mechanical
properties to help store, transmit, and process information (encoded in
quantum bits (qubits) instead of binary bits).

Mathematically, quantum states (with m physical states) are represented
by density matrices A ∈Mm, i.e., positive semidefinite matrices
(operators) with trace one.

Quantum evolution of a closed system is governed by unitary similarity
transforms:

A(t) = UtA(0)U∗
t .

Suppose A ∈Mm and B ∈Mn are quantum states. Their joint quantum
state is C = A⊗B = (aijB) in the (composite) bipartite system, where
the general states are represented by mn×mn density matrices resulting
from mixing or decoherence.

So, in the study of quantum information science, one often deals
with tensor products of matrices.
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Separable States

Notation

Mn: the algebra of n× n complex matrices.

X ⊗ Y = (xijY ): the tensor product of the matrices X = (xij) and Y .

Hn: the real linear space of n× n Hermitian matrices.

Dn: the set of n× n density matrices, i.e., positive semidefinite
matrices with trace one.

Pm: set of rank one matrices in Dm, the set of pure states.

Sm,n = conv {Pm ⊗ Pn} is a subset of Dmn known as the set of
separable states.

A quantum state ρ ∈ Dmn is entangled if ρ ∈ Dmn \ Sm,n.

To determine whether ρ ∈ Dmn is separable is an NP hard problem.
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Problems of interest

Our question
What are the maps which will preserve the set of separable states?
Can we transform the states so that it is easier to check separability?

We can apply changes of bases for each of the systems:

A⊗B 7→ U∗AU ⊗B, A⊗B 7→ A⊗ V ∗BV, U, V unitary.

If m = n, one can swap the two component states: A⊗B 7→ B ⊗A.
The partial transpose maps on Hmn defined by

PT1(A⊗B) = At ⊗B and PT2(A⊗B) = A⊗Bt

preserve the set of separable states, i.e., PTj(Sm,n) = Sm,n for j = 1, 2.
In fact, if C ∈ Sm,n then PTj(C) ∈ Dmn for j = 1, 2. The converse is
true if (m,n) ∈ {(2, 2), (2, 3), (3, 2)}. Else, there are examples of
entangled states with positive partial transpose.
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Result for bipartite systems

Theorem [FLPS, 2010], [Flfsen & Shultz, 2010]
Let Ψ : Hmn → Hmn be a linear map. The following are equivalent.
(a) Ψ(Pm ⊗ Pn) = Pm ⊗ Pn.
(b) Ψ(Sm,n) = Sm,n.
(c) There are unitary U ∈Mm and V ∈Mn such that

(c.1) Ψ(A⊗B) = ψ1(A)⊗ ψ2(B) for A⊗B ∈ Hmn, or
(c.2) m = n and Ψ(A⊗B) = ψ2(B)⊗ ψ1(A) for A⊗B ∈ Hmn,

where ψ1 has the form A 7→ UAU∗ or A 7→ UAtU∗,
and ψ2 has the form B 7→ V BV ∗ or B 7→ V BtV ∗.
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Remarks

Any scheme for detecting separable states must be invariant under the
maps described in the theorem.

If there is a necessary condition for separability, then one can apply the
condition to φ(X) for all φ described in the theorem.

Let Φ : Dmn → Dmn be an affine map such that Φ(Sm,n) = Sm,n. Then
Φ can be extended uniquely to an invertible linear map Ψ : Hmn → Hmn.

The proof of [FS] (similar to an earlier proof of ours) depends heavily on
the convex feature of Sm,n and is not easy to be extended to the
multi-partitite case.
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An auxiliary result

Proposition [FLPS, 2010]
Suppose ψ : Hm → Hn is linear and satisfies ψ(Pm) ⊆ Pn. Then one of the
following holds:

there is R ∈ Pn such that ψ has the form A 7→ (tr A)R.

m ≤ n and there is a U ∈Mm×n with UU∗ = Im such that ψ has the
form

A 7→ U∗AU or A 7→ U∗AtU.
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Extension to multi-partite systems

Theorem [FLPS,2010]

Suppose n1 ≥ · · · ≥ nk ≥ 2 are positive integers with k > 1 and N =
∏k

i=1 ni.

The following are equivalent for a linear map Ψ : HN → HN .

(a) Ψ
(
⊗ki=1Pni

)
= ⊗ki=1Pni .

(b) Ψ
(
conv (⊗ki=1Pni )

)
= conv

(
⊗ki=1Pni

)
.

(c) There is a permutation π on {1, . . . , k} and linear maps ψi on Hni for
i = 1, . . . k such that

Ψ
(
⊗ki=1Ai

)
= ⊗ki=1ψi

(
Aπ(i)

)
for ⊗ki=1 Ak ∈ ⊗ki=1Pni ,

where ψi has the form

X 7→ UiXU
∗
i or X 7→ UiX

tU∗
i ,

for some unitary Ui ∈Mni and nπ(i) = ni for i = 1, . . . , k.
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Further extensions and notation

Hou and his group has extended the results to infinite dimensional setting.

Lim has extended the results to linear maps sending Pm1 ⊗ · · · ⊗ Pmk to
Pn1 ⊗ · · · ⊗ Pnk .

Additional notation

U(C) = {UCU∗ : U unitary}: the unitary similarity orbit of C ∈Mn.

U(C)⊗ U(D) = {X ⊗ Y : (X,Y ) ∈ U(C)× U(D)}.

If C ∈ Hm is a rank one orthogonal projection, then U(C) = Pm.

So, our previous results concern the preservers of U(C)⊗ U(D) for rank
one orthogonal projections C and D.

How about the general density matrices C and D?
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How about the general density matrices C and D?
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Let

L(C): the set of linear operators mapping U(C) onto itself.

L(C,D): the set of linear operators mapping U(C) onto U(D).

Theorem [Li and Tsing, 1995]
Operators in L(C) have the form
(1) A 7→ UAU∗ or A 7→ UAtU∗ for some unitary U ∈Mm,
(2) A 7→ (2 tr A)Im/m− UAU∗ or A 7→ (2 tr A)Im/m− UAtU∗

for some unitary U ∈Mm in case U(C) = U((2 tr C)Im/m− C).

Suppose (C,D) ∈ Dm ×Dn. The set L(C,D) is non-empty if and only if
m = n with

(i) U(C) = U(D) or (ii) U(2I/m− C) = U(D).

Operators in L(C,D) have the form (1) or (2) depending on (i) or (ii) holds.
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Linear preservers of U(C)⊗ U(D)

Theorem [LPS,2011]
Let (C,D) ∈ Dm ×Dn. Suppose Ψ : Hmn → Hmn is linear. The following are
equivalent.

(a) Ψ(U(C)⊗ U(D)) = U(C)⊗ U(D).
(b) Ψ(conv {U(C)⊗ U(D)}) = conv {U(C)⊗ U(D)}.
(c) One of the following holds.

(c.1) There is (ψ1, ψ2) ∈ L(C)× L(D) such that

Ψ(A⊗B) = ψ1(A)⊗ ψ2(B) for all A⊗B ∈ Hm ⊗Hn.

(c.2) (m,U(C)) = (n,U(D)), there is (ψ1, ψ2) ∈ L(C)×L(D) such that

Ψ(A⊗B) = ψ2(B)⊗ ψ1(A) for all A⊗B ∈ Hm ⊗Hn.

(c.3) (m,U(2Im/m− C)) = (n,U(D)), there are ψ1, ψ2 ∈ L(C,D) such
that

Ψ(A⊗B) = ψ2(B)⊗ ψ1(A) for all A⊗B ∈ Hm ⊗Hn.

Chi-Kwong Li Preserver problems in quantum information science



Linear preservers of U(C)⊗ U(D)

Theorem [LPS,2011]
Let (C,D) ∈ Dm ×Dn. Suppose Ψ : Hmn → Hmn is linear. The following are
equivalent.

(a) Ψ(U(C)⊗ U(D)) = U(C)⊗ U(D).

(b) Ψ(conv {U(C)⊗ U(D)}) = conv {U(C)⊗ U(D)}.
(c) One of the following holds.

(c.1) There is (ψ1, ψ2) ∈ L(C)× L(D) such that

Ψ(A⊗B) = ψ1(A)⊗ ψ2(B) for all A⊗B ∈ Hm ⊗Hn.

(c.2) (m,U(C)) = (n,U(D)), there is (ψ1, ψ2) ∈ L(C)×L(D) such that

Ψ(A⊗B) = ψ2(B)⊗ ψ1(A) for all A⊗B ∈ Hm ⊗Hn.

(c.3) (m,U(2Im/m− C)) = (n,U(D)), there are ψ1, ψ2 ∈ L(C,D) such
that

Ψ(A⊗B) = ψ2(B)⊗ ψ1(A) for all A⊗B ∈ Hm ⊗Hn.

Chi-Kwong Li Preserver problems in quantum information science



Linear preservers of U(C)⊗ U(D)

Theorem [LPS,2011]
Let (C,D) ∈ Dm ×Dn. Suppose Ψ : Hmn → Hmn is linear. The following are
equivalent.

(a) Ψ(U(C)⊗ U(D)) = U(C)⊗ U(D).
(b) Ψ(conv {U(C)⊗ U(D)}) = conv {U(C)⊗ U(D)}.

(c) One of the following holds.

(c.1) There is (ψ1, ψ2) ∈ L(C)× L(D) such that

Ψ(A⊗B) = ψ1(A)⊗ ψ2(B) for all A⊗B ∈ Hm ⊗Hn.

(c.2) (m,U(C)) = (n,U(D)), there is (ψ1, ψ2) ∈ L(C)×L(D) such that

Ψ(A⊗B) = ψ2(B)⊗ ψ1(A) for all A⊗B ∈ Hm ⊗Hn.

(c.3) (m,U(2Im/m− C)) = (n,U(D)), there are ψ1, ψ2 ∈ L(C,D) such
that

Ψ(A⊗B) = ψ2(B)⊗ ψ1(A) for all A⊗B ∈ Hm ⊗Hn.

Chi-Kwong Li Preserver problems in quantum information science



Linear preservers of U(C)⊗ U(D)

Theorem [LPS,2011]
Let (C,D) ∈ Dm ×Dn. Suppose Ψ : Hmn → Hmn is linear. The following are
equivalent.

(a) Ψ(U(C)⊗ U(D)) = U(C)⊗ U(D).
(b) Ψ(conv {U(C)⊗ U(D)}) = conv {U(C)⊗ U(D)}.
(c) One of the following holds.

(c.1) There is (ψ1, ψ2) ∈ L(C)× L(D) such that

Ψ(A⊗B) = ψ1(A)⊗ ψ2(B) for all A⊗B ∈ Hm ⊗Hn.

(c.2) (m,U(C)) = (n,U(D)), there is (ψ1, ψ2) ∈ L(C)×L(D) such that

Ψ(A⊗B) = ψ2(B)⊗ ψ1(A) for all A⊗B ∈ Hm ⊗Hn.

(c.3) (m,U(2Im/m− C)) = (n,U(D)), there are ψ1, ψ2 ∈ L(C,D) such
that

Ψ(A⊗B) = ψ2(B)⊗ ψ1(A) for all A⊗B ∈ Hm ⊗Hn.

Chi-Kwong Li Preserver problems in quantum information science



Linear preservers of U(C)⊗ U(D)

Theorem [LPS,2011]
Let (C,D) ∈ Dm ×Dn. Suppose Ψ : Hmn → Hmn is linear. The following are
equivalent.

(a) Ψ(U(C)⊗ U(D)) = U(C)⊗ U(D).
(b) Ψ(conv {U(C)⊗ U(D)}) = conv {U(C)⊗ U(D)}.
(c) One of the following holds.

(c.1) There is (ψ1, ψ2) ∈ L(C)× L(D) such that

Ψ(A⊗B) = ψ1(A)⊗ ψ2(B) for all A⊗B ∈ Hm ⊗Hn.

(c.2) (m,U(C)) = (n,U(D)), there is (ψ1, ψ2) ∈ L(C)×L(D) such that

Ψ(A⊗B) = ψ2(B)⊗ ψ1(A) for all A⊗B ∈ Hm ⊗Hn.

(c.3) (m,U(2Im/m− C)) = (n,U(D)), there are ψ1, ψ2 ∈ L(C,D) such
that

Ψ(A⊗B) = ψ2(B)⊗ ψ1(A) for all A⊗B ∈ Hm ⊗Hn.

Chi-Kwong Li Preserver problems in quantum information science



Linear preservers of U(C)⊗ U(D)

Theorem [LPS,2011]
Let (C,D) ∈ Dm ×Dn. Suppose Ψ : Hmn → Hmn is linear. The following are
equivalent.

(a) Ψ(U(C)⊗ U(D)) = U(C)⊗ U(D).
(b) Ψ(conv {U(C)⊗ U(D)}) = conv {U(C)⊗ U(D)}.
(c) One of the following holds.

(c.1) There is (ψ1, ψ2) ∈ L(C)× L(D) such that

Ψ(A⊗B) = ψ1(A)⊗ ψ2(B) for all A⊗B ∈ Hm ⊗Hn.

(c.2) (m,U(C)) = (n,U(D)), there is (ψ1, ψ2) ∈ L(C)×L(D) such that

Ψ(A⊗B) = ψ2(B)⊗ ψ1(A) for all A⊗B ∈ Hm ⊗Hn.

(c.3) (m,U(2Im/m− C)) = (n,U(D)), there are ψ1, ψ2 ∈ L(C,D) such
that

Ψ(A⊗B) = ψ2(B)⊗ ψ1(A) for all A⊗B ∈ Hm ⊗Hn.

Chi-Kwong Li Preserver problems in quantum information science



Linear preservers of U(C)⊗ U(D)

Theorem [LPS,2011]
Let (C,D) ∈ Dm ×Dn. Suppose Ψ : Hmn → Hmn is linear. The following are
equivalent.

(a) Ψ(U(C)⊗ U(D)) = U(C)⊗ U(D).
(b) Ψ(conv {U(C)⊗ U(D)}) = conv {U(C)⊗ U(D)}.
(c) One of the following holds.

(c.1) There is (ψ1, ψ2) ∈ L(C)× L(D) such that

Ψ(A⊗B) = ψ1(A)⊗ ψ2(B) for all A⊗B ∈ Hm ⊗Hn.

(c.2) (m,U(C)) = (n,U(D)), there is (ψ1, ψ2) ∈ L(C)×L(D) such that

Ψ(A⊗B) = ψ2(B)⊗ ψ1(A) for all A⊗B ∈ Hm ⊗Hn.

(c.3) (m,U(2Im/m− C)) = (n,U(D)), there are ψ1, ψ2 ∈ L(C,D) such
that

Ψ(A⊗B) = ψ2(B)⊗ ψ1(A) for all A⊗B ∈ Hm ⊗Hn.

Chi-Kwong Li Preserver problems in quantum information science



Further remarks

The result is extended to linear preservers of U(C1)⊗ · · · ⊗ U(Ck) and its
convex hull.

It would be interesting to study general (non-linear) preservers.
There are other preserver problems in quantum information science.
Saitoh considered special linear maps on Hmn preserving the eigenvalues
of A⊗B.
Fosner, Li, Sze are studying linear maps on Hmn and Mmn preserving the
various functions on A⊗B such as the spectral radius, numerical radius,
norms, etc.
We also consider preserves of subsets such as GL(m)⊗GL(n) and
U(m)⊗ U(n), etc.
There are many interesting preserver problems related to tensor structure,
whose answers may be related to other topics.
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Hope to tell you more next time.

Please submit your paper to the special Linear and Multilinear Algebra
issue for this meeting.

Thank you for your attention!
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