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1. INTRODUCTION AND BASIC DEFINITIONS

Some Notations

e R := a ring with idemtity 1
e /(R) := the set of all nonunits idempotents in R

e M (R) := the set of all primitive idempotents and
Oin R



Known Results

¢ D. Dolzan, Multiplicative sets of idempotents in a
finite ring, J. Algebra, 2006.

De finition :

1. Let <; denote the usual relation on I(R) defined by
ey feef=fe=e.

2. An idempotent e is said to be preserves G(R) (the
group of all units in R), if the set eGe C G(eRe).



Theorem 1. If every minimal tdempotent preserves G,
then R 1s a direct sum of local rings and the number of
summands equals the mazximal number of mutually orthog-
onal minimal idempotents in R.

Theorem 2. If M 1is closed under multiplicative, then ev-
ery minimal tdempotent preserves G.

Corollary 3. Let M be the set of all nonzero minimal
1dempotents according to <i. Then M is closed under mul-
tiplication if and only if R is a direct sum of local rings.



¢ H. K. Grover, D. Khurana and S. Singh, Rings with
multiplicative sets of primitive idempotents, Comm. Alge-
bra, 2009.

De finition :

1. A ring R is called connected if it has no idempotents
other than 0 and 1.

2. Two idempotents e, f € R are said to be orthogonal
ifef = fe=0.



Theorem 1. A ring R is a finite direct product of con-
nected rings if and only if M (R) is multiplicative and R has
a complete finite set of primitive orthogonal idempotents.

Theorem 2. If M(R) is multiplicative, then for any 0 #

e € M(R) and u € G(R), eue € G(eRe) with (eue)™! =

eu_le.



De finition :

1. I(R) is said to be additive if for all e, f € I(R)
(e # f), e+ f € I(R) (equivalently, ef = — fe).

Example: Boolean ring

2. M(R) is said to be additive in I(R) if for all e, f €
M(R) (¢ # f), e+ f € I(R).

Examples: (1) Boolean ring

(2) A direct product of local rings



Note
1. I(R) is additive = M(R) is additive in I(R).
2. I(R) is additive <= M (R) is additive in I(R)

Example: A finite direct product of infinite fields.



2. SOME PROPERTIES OF A RING
WITH ADDITIVE IDEMPOTENTS

Lemma 2.1. Let R be a ring. If I(R) is additive, then
foralle, f € I(R), ef = fe, i.e., I[(R) is commuting.

Note

(1) I(R) is additive, = I(R) C Z(R).
(2) I(R) is additive, <« I(R) C Z
Example: Zs3 @ Zs D Zs.
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Corollary 2.2. Let R be a ring. If I(R) is additive, then
foralle, f € I(R) (e # f), 2ef = 0.
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Theorem 2.3. Let R be a ring. Then I(R) is additive if
and only if I(R) is commuting and char(R) = 2.

Remark 1. Note that Theorem 2.3 exhibits that if R
is a ring such that I(R) is additive, then 1+ e € I(R) for
all 0 #e € I(R).



12

Lemma 2.4. Let R be a ring. If M(R) is additive in
I(R), then for alle, f € M(R) (e # f), ef = fe, and also
M(R) C Z(R).

Theorem 2.5. Let R be a ring. If M(R) is additive in
I(R), then for alle, f € M(R) (e # f), ef = fe=0.
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Corollary 2.6. Let R be a ring. Then M(R) is additive
in I(R) if and only if M(R) is the set of primitive pairwise
orthogonal idempotents.

Remark 2. Let R be a ring such that M (R) is additive
in I(R). Observe that (1) if eR = fR for somee, f € M(R)
(e, f # 0), then e = f; (2) if e1,e9,--- ,e, € M(R) are
distinct, then et R+esR+---4+e¢, R = et RPes R®- - -De, R
with e;RNe;R = {0} for all ¢,j =1,--- ,n (¢ # j), and
(e1+es+--+e,) R=etR®eaR®---De,R.
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Lemma 2.7. Let R be a ring such that M (R) is commut-
ing, and let N C J(R) be an ideal of R. If e = f € R/N
for some e, f € M(R), then e = f.

Corollary 2.8. Let N C J(R) be an ideal of a Ting R
such that idempotents in R/N can be lifted to R. If M(R)
is commuting, then |M(R)| = |M(R/N)|.
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Theorem 2.9. Let N C J(R) be an ideal of R such that
idempotents in R/N can be lifted to R. If M(R) is com-
muting, then M(R/N) is additive in I(R/N) if and only
if M(R) is additive in I(R).
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Theorem 2.10. Let R be a ring and e, f € R be idempo-

tents such that ef is a nonzero idempotent. Then we have
the following:

(1) Ife e M(R), theneR =efeR =¢efR andefe,ef €
M(R);

(2) If f € M(R), then Rf = Rfef = Ref and fef,ef €
M(R).



17

Remark 3. In [3, Theorem 3.4], it was shown that if
e, f are two nonzero primitive idempotents of a ring R such
that ef # 0 is an idempotent, then e and f are conjugates.
By using Theorem 2.10, we have alternative proof of |3,
Theorem 3.4] as follows:

Since e € M(R) (resp. f € M(R)) and ef # 0,eR =
efR (resp. Rf = Ref) by Theorem 2.10, and so ef and e
are conjugates (resp. ef and f are conjugates). Hence e
and f are conjugates.
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Corollary 2.11. Let R be a ring and e, f € R be idem-
potents such that fe is a nonzero idempotent. (1) If e €
M(R), then eR = fefR = feR and fef, fe € M(R); (2)
If f € M(R), then Rf = Refe = Rfe and fef, fe €
M(R).

Corollary 2.12. Let R be a ring and e, f € R be idempo-
tents. If e or f is central and e € M(R), then eR = efR
and ef € M(R).

Corollary 2.13. Let R be a ring. If I(R) is multiplicative,
then M (R) is multiplicative.
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3. SOME RINGS HAVING MULTIPLICATIVE
OR ADDITIVE SET OF IDEMPOTENTS

The following theorem was shown by Grover, Khurana,
and Singh (see [3, Theorem 2.3]).

Theorem 3.1. A ring R is a finite direct product of con-
nected rings if and only if M(R) is multiplicative and R
has a complete set of primitive idempotents.
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By using the results obtained in Section 2, we have the
following:

Theorem 3.2. Let R be a ring with a complete set of

primitive tdempotents. Then the following are equivalent:
(1) I(R) is multiplicative;

R is a finite direct product of connected rings;

M (R) is commuting;

M(R) is multiplicative;

M (R) is additive in I(R).
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Corollary 3.3. Let R be a ring with a complete set of
primitive idempotents. Then the following are equivalent:
(1) I(R) is additive;
(2) R is a finite direct product of connected rings of
characteristic 2;
(3) M(R) is commuting and char(R) = 2;
(4) M(R) is multiplicative and char(R) = 2;
(5) M(R) is additive in I(R) and char(R) = 2.

Remark 4. Let R be a semiperfect ring. Then we
can note that I(R) is additive and G = {1} if and only if
R~ H ZQ.
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In [2, Proposition 9.9], it was shown that if R is a regu-
lar, right self-injective ring, then B(R), the set of all central
idempotents in R, is a complete Boolean algebra in which
eNf=efandeV f=ec+ f—ef foralle, f € B(R). Note
that if R is a von Neumann regular, right self-injective ring,
then 1 = VB,(R), the supremum of B,(R), where B,(R)
is the set of orthogonal idempotents of B(R) if and only if

R ~ HGiEBO(R) GZR
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We may raise a natural question: Is it possible to extend
Theorem 3.1 and Theorem 3.2 to the case of a direct prod-
uct of countably many connected rings? In other words, as-
sume that a ring R has a countably infinite set of pairwise
orthogonal primitive idempotents, say B = {e1,ea,...}
such that 1 = VB. Then is the condition that R is a
direct product of countably many connected rings equiv-
alent to the condition that M (R) is multiplicative? But
this does not hold true as the following example shows.
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Example 1. Let K be a field and F' be a proper subfield
of K. Consider

R = {(an)%o_l € H K |a, € Fis eventurally} :

n=1

which is a subring of [[_; K. Then R is a von Neumann
regular ring, and Q(R) = [[°_; K is the maximal ring of
quotients of R. Consider

B ={ej,e2,...} CQ(R),

where e; = (1,0,0,...),eo = (0,1,0,...),..., and so on.
Then B is a set of orthogonal primitive central idempo-
tents in R. Further, 1 = VB in I(R) because Q(R) =
[[.2,eQ(R) and I(R) = I(Q(R)). Also obviously, M (R)
1s commuting.

On the other hand, assume that R =[], ., R\, a count-
ably infinite direct product of connected rings. Note that
each Ry is a commutative von Neumann regular connected
ring. Thus each Ry is a field, and so R is self-injective,
which implies that R = Q(R), a contradiction.
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Recall that a central idempotent c of a ring R is said
to be centrally primitive in R if ¢ # 0 and ¢ cannot be
written as a sum of two nonzero orthogonal central idem-
potents in R (equivalently, cR is indecomposable as a ring).

Also, R is said to have a complete set of centrally prim-
itive idempotents if there exists a finite set of centrally

primitive pairwise orthogonal idempotents whose sum is 1
[4, Sects. 21 and 22].

Note that if a ring R has a complete set of primitive
idempotents, then R has a complete set of centrally prim-
itive idempotents.
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We call a nonzero idempotent e in a ring R fully basic
if e can be expressed as a sum of orthogonal primitive
idempotents in R, and we call a ring R a fully basic ring
if all idempotents in R are fully basic.

Examples:
(1) a finite direct product of local rings

(2) a ring of all upper triangular 2 x 2 matrices over Z,

Note that in a fully basic ring, I(R) may not be multi-
plicative.
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Theorem 3.4. Suppose that a ring R has a complete set
of primitive idempotents. If I(R) is multiplicative, then R
1 a fully basic ring.
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Corollary 3.5. A commutative semiperfect ring is a fully
basic ring.

Remark 5. Let S = {ej,e2,...,¢e,.} be a complete set
of primitive idempotents. Then by Theorems 3.1,

(1) I(R) is multiplicative if and only if R ~ Ry & Ry @
-+ @ R, where all R;’s are connected rings, and then by
Theorem 3.4, R is a fully basic ring.

(2) If I(R) is multiplicative, then the number of all
idempotents in R is equal to 2".
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Remark 6. Let S;, = {e;, +e,,+ - -+e;, : €y, €iny... 6, €
S,i1 <idg < -+- <1} foreach k=1,2,... 7.

Then we have that
() I(R)u {1} ={0tUuS1U---US,.

(2) |Sk| = »Cr = = for all k=1, 7

B)2r=1+|51|+--+|S|=1+,C1 +--- +,C,.
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