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1. Introduction and basic definitions

Some Notations

• R := a ring with idemtity 1

• I(R) := the set of all nonunits idempotents in R

• M(R) := the set of all primitive idempotents and
0 in R
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Known Results

¦ D. Dolz̆an, Multiplicative sets of idempotents in a
finite ring, J. Algebra, 2006.

Definition :

1. Let ≤1 denote the usual relation on I(R) defined by
e ≤1 f ⇔ ef = fe = e.

2. An idempotent e is said to be preserves G(R) (the
group of all units in R), if the set eGe ⊆ G(eRe).
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Theorem 1. If every minimal idempotent preserves G,
then R is a direct sum of local rings and the number of
summands equals the maximal number of mutually orthog-
onal minimal idempotents in R.

Theorem 2. If M is closed under multiplicative, then ev-
ery minimal idempotent preserves G.

Corollary 3. Let M be the set of all nonzero minimal
idempotents according to ≤1. Then M is closed under mul-
tiplication if and only if R is a direct sum of local rings.
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¦ H. K. Grover, D. Khurana and S. Singh, Rings with
multiplicative sets of primitive idempotents, Comm. Alge-
bra, 2009.

Definition :

1. A ring R is called connected if it has no idempotents
other than 0 and 1.

2. Two idempotents e, f ∈ R are said to be orthogonal
if ef = fe = 0.
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Theorem 1. A ring R is a finite direct product of con-
nected rings if and only if M(R) is multiplicative and R has
a complete finite set of primitive orthogonal idempotents.

Theorem 2. If M(R) is multiplicative, then for any 0 6=
e ∈ M(R) and u ∈ G(R), eue ∈ G(eRe) with (eue)−1 =
eu−1e.
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Definition :

1. I(R) is said to be additive if for all e, f ∈ I(R)
(e 6= f), e + f ∈ I(R) (equivalently, ef = −fe).

Example: Boolean ring

2. M(R) is said to be additive in I(R) if for all e, f ∈
M(R) (e 6= f), e + f ∈ I(R).

Examples: (1) Boolean ring

(2) A direct product of local rings
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Note

1. I(R) is additive ⇒ M(R) is additive in I(R).

2. I(R) is additive : M(R) is additive in I(R)

Example: A finite direct product of infinite fields.
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2. Some properties of a ring
with additive idempotents

Lemma 2.1. Let R be a ring. If I(R) is additive, then
for all e, f ∈ I(R), ef = fe, i.e., I(R) is commuting.

Note

(1) I(R) is additive, ⇒ I(R) ⊆ Z(R).

(2) I(R) is additive, : I(R) ⊆ Z(R).

Example: Z3 ⊕ Z3 ⊕ Z3.
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Corollary 2.2. Let R be a ring. If I(R) is additive, then
for all e, f ∈ I(R) (e 6= f), 2ef = 0.
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Theorem 2.3. Let R be a ring. Then I(R) is additive if
and only if I(R) is commuting and char(R) = 2.

Remark 1. Note that Theorem 2.3 exhibits that if R
is a ring such that I(R) is additive, then 1 + e ∈ I(R) for
all 0 6= e ∈ I(R).
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Lemma 2.4. Let R be a ring. If M(R) is additive in
I(R), then for all e, f ∈ M(R) (e 6= f), ef = fe, and also
M(R) ⊆ Z(R).

Theorem 2.5. Let R be a ring. If M(R) is additive in
I(R), then for all e, f ∈ M(R) (e 6= f), ef = fe = 0.
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Corollary 2.6. Let R be a ring. Then M(R) is additive
in I(R) if and only if M(R) is the set of primitive pairwise
orthogonal idempotents.

Remark 2. Let R be a ring such that M(R) is additive
in I(R). Observe that (1) if eR = fR for some e, f ∈ M(R)
(e, f 6= 0), then e = f ; (2) if e1, e2, · · · , en ∈ M(R) are
distinct, then e1R+e2R+· · ·+enR = e1R⊕e2R⊕· · ·⊕enR
with eiR ∩ ejR = {0} for all i, j = 1, · · · , n (i 6= j), and
(e1 + e2 + · · ·+ en)R = e1R⊕ e2R⊕ · · · ⊕ enR.
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Lemma 2.7. Let R be a ring such that M(R) is commut-
ing, and let N ⊆ J(R) be an ideal of R. If ē = f̄ ∈ R/N
for some e, f ∈ M(R), then e = f .

Corollary 2.8. Let N ⊆ J(R) be an ideal of a ring R
such that idempotents in R/N can be lifted to R. If M(R)
is commuting, then |M(R)| = |M(R/N)|.
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Theorem 2.9. Let N ⊆ J(R) be an ideal of R such that
idempotents in R/N can be lifted to R. If M(R) is com-
muting, then M(R/N) is additive in I(R/N) if and only
if M(R) is additive in I(R).
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Theorem 2.10. Let R be a ring and e, f ∈ R be idempo-
tents such that ef is a nonzero idempotent. Then we have
the following:

(1) If e ∈ M(R), then eR = efeR = efR and efe, ef ∈
M(R);

(2) If f ∈ M(R), then Rf = Rfef = Ref and fef, ef ∈
M(R).
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Remark 3. In [3, Theorem 3.4], it was shown that if
e, f are two nonzero primitive idempotents of a ring R such
that ef 6= 0 is an idempotent, then e and f are conjugates.
By using Theorem 2.10, we have alternative proof of [3,
Theorem 3.4] as follows:

Since e ∈ M(R) (resp. f ∈ M(R)) and ef 6= 0, eR =
efR (resp. Rf = Ref) by Theorem 2.10, and so ef and e
are conjugates (resp. ef and f are conjugates). Hence e
and f are conjugates.
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Corollary 2.11. Let R be a ring and e, f ∈ R be idem-
potents such that fe is a nonzero idempotent. (1) If e ∈
M(R), then eR = fefR = feR and fef, fe ∈ M(R); (2)
If f ∈ M(R), then Rf = Refe = Rfe and fef, fe ∈
M(R).

Corollary 2.12. Let R be a ring and e, f ∈ R be idempo-
tents. If e or f is central and e ∈ M(R), then eR = efR
and ef ∈ M(R).

Corollary 2.13. Let R be a ring. If I(R) is multiplicative,
then M(R) is multiplicative.
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3. Some rings having multiplicative
or additive set of idempotents

The following theorem was shown by Grover, Khurana,
and Singh (see [3, Theorem 2.3]).

Theorem 3.1. A ring R is a finite direct product of con-
nected rings if and only if M(R) is multiplicative and R
has a complete set of primitive idempotents.
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By using the results obtained in Section 2, we have the
following:

Theorem 3.2. Let R be a ring with a complete set of
primitive idempotents. Then the following are equivalent:

(1) I(R) is multiplicative;
(2) R is a finite direct product of connected rings;
(3) M(R) is commuting;
(4) M(R) is multiplicative;
(5) M(R) is additive in I(R).
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Corollary 3.3. Let R be a ring with a complete set of
primitive idempotents. Then the following are equivalent:

(1) I(R) is additive;
(2) R is a finite direct product of connected rings of

characteristic 2;
(3) M(R) is commuting and char(R) = 2;
(4) M(R) is multiplicative and char(R) = 2;
(5) M(R) is additive in I(R) and char(R) = 2.

Remark 4. Let R be a semiperfect ring. Then we
can note that I(R) is additive and G = {1} if and only if
R ' ∏

Z2.
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In [2, Proposition 9.9], it was shown that if R is a regu-
lar, right self-injective ring, then B(R), the set of all central
idempotents in R, is a complete Boolean algebra in which
e∧ f = ef and e∨ f = e+ f − ef for all e, f ∈ B(R). Note
that if R is a von Neumann regular, right self-injective ring,
then 1 = ∨Bo(R), the supremum of Bo(R), where Bo(R)
is the set of orthogonal idempotents of B(R) if and only if
R ' ∏

ei∈Bo(R) eiR.
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We may raise a natural question: Is it possible to extend
Theorem 3.1 and Theorem 3.2 to the case of a direct prod-
uct of countably many connected rings? In other words, as-
sume that a ring R has a countably infinite set of pairwise
orthogonal primitive idempotents, say B = {e1, e2, . . . }
such that 1 = ∨B. Then is the condition that R is a
direct product of countably many connected rings equiv-
alent to the condition that M(R) is multiplicative? But
this does not hold true as the following example shows.
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Example 1. Let K be a field and F be a proper subfield
of K. Consider

R =

{
(an)∞n=1 ∈

∞∏
n=1

K | an ∈ F is eventurally

}
,

which is a subring of
∏∞

n=1 K. Then R is a von Neumann
regular ring, and Q(R) =

∏∞
n=1 K is the maximal ring of

quotients of R. Consider

B = {e1, e2, . . . } ⊆ Q(R),

where e1 = (1, 0, 0, . . . ), e2 = (0, 1, 0, . . . ), . . . , and so on.
Then B is a set of orthogonal primitive central idempo-
tents in R. Further, 1 = ∨B in I(R) because Q(R) =∏∞

n=1 eiQ(R) and I(R) = I(Q(R)). Also obviously, M(R)
is commuting.

On the other hand, assume that R =
∏

λ∈Λ Rλ, a count-
ably infinite direct product of connected rings. Note that
each Rλ is a commutative von Neumann regular connected
ring. Thus each Rλ is a field, and so R is self-injective,
which implies that R = Q(R), a contradiction.
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Recall that a central idempotent c of a ring R is said
to be centrally primitive in R if c 6= 0 and c cannot be
written as a sum of two nonzero orthogonal central idem-
potents in R (equivalently, cR is indecomposable as a ring).

Also, R is said to have a complete set of centrally prim-
itive idempotents if there exists a finite set of centrally
primitive pairwise orthogonal idempotents whose sum is 1
[4, Sects. 21 and 22].

Note that if a ring R has a complete set of primitive
idempotents, then R has a complete set of centrally prim-
itive idempotents.
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We call a nonzero idempotent e in a ring R fully basic
if e can be expressed as a sum of orthogonal primitive
idempotents in R, and we call a ring R a fully basic ring
if all idempotents in R are fully basic.

Examples:
(1) a finite direct product of local rings
(2) a ring of all upper triangular 2× 2 matrices over Z2

Note that in a fully basic ring, I(R) may not be multi-
plicative.
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Theorem 3.4. Suppose that a ring R has a complete set
of primitive idempotents. If I(R) is multiplicative, then R
is a fully basic ring.



28

Corollary 3.5. A commutative semiperfect ring is a fully
basic ring.

Remark 5. Let S = {e1, e2, . . . , er} be a complete set
of primitive idempotents. Then by Theorems 3.1,

(1) I(R) is multiplicative if and only if R ' R1 ⊕R2 ⊕
· · · ⊕ Rr where all Ri’s are connected rings, and then by
Theorem 3.4, R is a fully basic ring.

(2) If I(R) is multiplicative, then the number of all
idempotents in R is equal to 2r.
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Remark 6. Let Sk = {ei1+ei2+· · ·+eik
: ei1 , ei2 , . . . , eik

∈
S, i1 < i2 < · · · < ik} for each k = 1, 2, . . . , r.

Then we have that

(1) I(R) ∪ {1} = {0} ∪ S1 ∪ · · · ∪ Sr.

(2) |Sk| = rCk = r(r−1)···(r−k+1)
k(k−1)···1 for all k = 1, · · · , r.

(3) 2r = 1 + |S1|+ · · ·+ |Sr| = 1 + rC1 + · · · + rCr.
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Thank You Very Much !!


