Kernel Inclusions of Algebraic Automorphisms

Hung-Yuan Chen

Department of Mathematics National Taiwan University

International Conference on Ring and Algebras In honor of Professor P.-H. Lee

Outline

- Notations
- 2 Motivations
 - Results of kernel inclusions of algebraic derivations
- 3 Main Theorem
 - Kernel inclusions of algebraic automorphisms
- Preliminary
 - Kharchenko's Theorem
 - Martindale's Theorem
 - The spirit
- 5 Sketch of the proof
- 6 Special cases
 - Example 1
 - Example 2

• Let *R* denote a prime ring.

- Q: symmetric Martindale quotient ring of R.
- C: extended centroid of R.

- Let *R* denote a prime ring.
- Q: symmetric Martindale quotient ring of R.
- C: extended centroid of R.

- Let *R* denote a prime ring.
- Q: symmetric Martindale quotient ring of R.
- C: extended centroid of R.

- For example, for a ∈ R, ad(a) : x ↦ [a, x] ^{def.} = ax − xa is a derivation.
- For a derivation d of R, $\operatorname{Ker}(d) = \{x \in R \mid d(x) = 0\}.$
- Analogously, for an automorphism σ of R
 R^(σ) = {x ∈ R | σ(x) = x}.
- Let $\iota(v) : x \to vxv^{-1}$.
- An automorphism σ of R is called X-inner if σ = ι(v) for some v ∈ Q.

- d: a derivation of R, namely,
 - $d: R \to R$ is an additive map satisfying d(xy) = xd(y) + d(x)y for all $x, y \in R$.
- For example, for a ∈ R, ad(a) : x ↦ [a, x] ^{def.} = ax xa is a derivation.
- For a derivation d of R, $\operatorname{Ker}(d) = \{x \in R \mid d(x) = 0\}.$
- Analogously, for an automorphism σ of R $R^{(\sigma)} = \{x \in R \mid \sigma(x) = x\}.$
- Let $\iota(v) : x \to vxv^{-1}$.
- An automorphism σ of R is called X-inner if σ = ι(v) for some v ∈ Q.

- For example, for a ∈ R, ad(a) : x ↦ [a, x] ^{def.} = ax xa is a derivation.
- For a derivation d of R, $\operatorname{Ker}(d) = \{x \in R \mid d(x) = 0\}.$
- Analogously, for an automorphism σ of R $R^{(\sigma)} = \{x \in R \mid \sigma(x) = x\}.$
- Let $\iota(v) : x \to vxv^{-1}$.
- An automorphism σ of R is called X-inner if σ = ι(v) for some v ∈ Q.

- For example, for a ∈ R, ad(a) : x ↦ [a, x] ^{def.} = ax xa is a derivation.
- For a derivation d of R, $\operatorname{Ker}(d) = \{x \in R \mid d(x) = 0\}.$
- Analogously, for an automorphism σ of R, $R^{(\sigma)} = \{x \in R \mid \sigma(x) = x\}.$
- Let $\iota(v) : x \to vxv^{-1}$.
- An automorphism σ of R is called X-inner if σ = ι(v) for some v ∈ Q.

- For example, for a ∈ R, ad(a) : x ↦ [a, x] ^{def.} = ax xa is a derivation.
- For a derivation d of R, $\operatorname{Ker}(d) = \{x \in R \mid d(x) = 0\}.$
- Analogously, for an automorphism σ of R, $R^{(\sigma)} = \{x \in R \mid \sigma(x) = x\}.$
- Let $\iota(v): x \to vxv^{-1}$.
- An automorphism σ of R is called X-inner if σ = ι(v) for some v ∈ Q.

- For example, for a ∈ R, ad(a) : x ↦ [a, x] ^{def.} = ax xa is a derivation.
- For a derivation d of R, $\operatorname{Ker}(d) = \{x \in R \mid d(x) = 0\}.$
- Analogously, for an automorphism σ of R, $R^{(\sigma)} = \{x \in R \mid \sigma(x) = x\}.$
- Let $\iota(v) : x \to v x v^{-1}$.
- An automorphism σ of R is called X-inner if σ = ι(v) for some v ∈ Q.

- For example, for a ∈ R, ad(a) : x ↦ [a, x] ^{def.} = ax xa is a derivation.
- For a derivation d of R, $\operatorname{Ker}(d) = \{x \in R \mid d(x) = 0\}.$
- Analogously, for an automorphism σ of R, $R^{(\sigma)} = \{x \in R \mid \sigma(x) = x\}.$
- Let $\iota(v) : x \to v x v^{-1}$.
- An automorphism σ of R is called X-inner if σ = ι(v) for some v ∈ Q.

Theorem (Brešar, 2005)

Assume char R = 0. Let d and d' be derivations with dC-algebraic. Assume $\text{Ker}(d) \subseteq \text{Ker}(d')$. Then d = ad(a) and d' = ad(p(a)) for some $a \in Q$ and $p(x) \in C[X]$.

In particular, $d' = \alpha_n d^n + \alpha_{n-1} d^{n-1} + \dots + \alpha_1 d$ for some $\alpha_i \in C$.

Theorem (Chuang, Lee, Wong, 2008)

Assume char R = p. Let d and d' be derivations with dC-algebraic. Assume $\text{Ker}(d) \subseteq \text{Ker}(d')$. Then $d' = \sum \alpha_i d^{p^i} + \operatorname{ad}(b)$ for some $b \in Q$.

Theorem (Brešar, 2005)

Assume char R = 0. Let d and d' be derivations with dC-algebraic. Assume $\text{Ker}(d) \subseteq \text{Ker}(d')$. Then d = ad(a) and d' = ad(p(a)) for some $a \in Q$ and $p(x) \in C[X]$.

In particular, $d' = \alpha_n d^n + \alpha_{n-1} d^{n-1} + \cdots + \alpha_1 d$ for some $\alpha_i \in C$.

Theorem (Chuang, Lee, Wong, 2008)

Assume char R = p. Let d and d' be derivations with dC-algebraic. Assume $\text{Ker}(d) \subseteq \text{Ker}(d')$. Then $d' = \sum \alpha_i d^{p^i} + \operatorname{ad}(b)$ for some $b \in Q$.

Theorem (Brešar, 2005)

Assume char R = 0. Let d and d' be derivations with dC-algebraic. Assume $\text{Ker}(d) \subseteq \text{Ker}(d')$. Then d = ad(a) and d' = ad(p(a)) for some $a \in Q$ and $p(x) \in C[X]$.

In particular, $d' = \alpha_n d^n + \alpha_{n-1} d^{n-1} + \cdots + \alpha_1 d$ for some $\alpha_i \in C$.

Theorem (Chuang, Lee, Wong, 2008)

Assume char R = p. Let d and d' be derivations with dC-algebraic. Assume $\text{Ker}(d) \subseteq \text{Ker}(d')$. Then $d' = \sum \alpha_i d^{p^i} + \text{ad}(b)$ for some $b \in Q$.

Motivated by these results, we concern kernel inclusion problem for automorphisms. We have the following:

Theorem

Let σ and τ be automorphisms of R and assume that σ is *C*-algebraic. Then $R^{(\sigma)} \subseteq R^{(\tau)}$ if and only if $\tau(x) = v\sigma^i(x)v^{-1}$ for all $x \in R$, where *i* is an integer and where *v* is in the centralizer of $R^{(\sigma)}$ in *Q*. Motivated by these results, we concern kernel inclusion problem for automorphisms. We have the following:

Theorem

Let σ and τ be automorphisms of R and assume that σ is *C*-algebraic. Then $R^{(\sigma)} \subseteq R^{(\tau)}$ if and only if $\tau(x) = v\sigma^i(x)v^{-1}$ for all $x \in R$, where *i* is an integer and where *v* is in the centralizer of $R^{(\sigma)}$ in *Q*. A set of automorphisms of R, say $\{\sigma_1, \sigma_2, \ldots, \sigma_m\}$, is called mutually outer if $\sigma_i \sigma_j^{-1}$ is X-outer for all $i \neq j$.

Theorem (Kharchenko, 1975)

Let $\sigma_1, \sigma_2, \ldots, \sigma_m$ be mutually outer automorphisms of R. For $a_i, b_i, c_j, d_j \in Q$, suppose that

$$\sum_{i=1}^m \sum_{j=1}^{n_i} a_{ij}\sigma_i(x)b_{ij} = 0$$

for all $x \in R$. Then

$$\sum_{j=1}^{n_i} a_{ij} y b_{ij} = 0$$

for all $y \in R$, for $i = 1, 2, \ldots, m$.

Example

• Assume $\sigma_1, \sigma_2, \sigma_3$ are mutually outer and

$$\begin{aligned} a\sigma_1(x)b &+ c\sigma_1(x)d &+ e\sigma_1(x)f \\ &+ g\sigma_2(x)h &+ i\sigma_2(x)j \\ &+ k\sigma_3(x)\ell &= 0. \end{aligned}$$

• Then

$$egin{array}{rcl} a\sigma_1(x)b &+& c\sigma_1(x)d &+& e\sigma_1(x)f &=& 0 \ && g\sigma_2(x)h &+& i\sigma_2(x)j &=& 0 \ && & & & k\sigma_3(x)\ell &=& 0 \end{array}$$

• $\sigma_1, \sigma_2, \sigma_3$ are automorphisms and hence onto. Substitute x with $\sigma_1^{-1}(y)$, we get ayb + cyd + eyf = 0 for all $y \in R$. Analogously, gyh + iyj = 0 and $ky\ell = 0$ for all $y \in R$.

Example

• Assume $\sigma_1, \sigma_2, \sigma_3$ are mutually outer and

$$\begin{aligned} a\sigma_1(x)b &+ c\sigma_1(x)d &+ e\sigma_1(x)f \\ &+ g\sigma_2(x)h &+ i\sigma_2(x)j \\ &+ k\sigma_3(x)\ell &= 0. \end{aligned}$$

Then

$$\begin{aligned} a\sigma_1(x)b &+ c\sigma_1(x)d &+ e\sigma_1(x)f &= 0\\ g\sigma_2(x)h &+ i\sigma_2(x)j &= 0\\ k\sigma_3(x)\ell &= 0 \end{aligned}$$

• $\sigma_1, \sigma_2, \sigma_3$ are automorphisms and hence onto. Substitute x with $\sigma_1^{-1}(y)$, we get ayb + cyd + eyf = 0 for all $y \in R$. Analogously, gyh + iyj = 0 and $ky\ell = 0$ for all $y \in R$.

Example

• Assume $\sigma_1, \sigma_2, \sigma_3$ are mutually outer and

$$\begin{aligned} a\sigma_1(x)b &+ c\sigma_1(x)d &+ e\sigma_1(x)f \\ &+ g\sigma_2(x)h &+ i\sigma_2(x)j \\ &+ k\sigma_3(x)\ell &= 0. \end{aligned}$$

Then

$$\begin{aligned} a\sigma_1(x)b &+ c\sigma_1(x)d &+ e\sigma_1(x)f &= 0\\ g\sigma_2(x)h &+ i\sigma_2(x)j &= 0\\ k\sigma_3(x)\ell &= 0 \end{aligned}$$

• $\sigma_1, \sigma_2, \sigma_3$ are automorphisms and hence onto. Substitute x with $\sigma_1^{-1}(y)$, we get ayb + cyd + eyf = 0 for all $y \in R$. Analogously, gyh + iyj = 0 and $ky\ell = 0$ for all $y \in R$.

Theorem (Martindale, 1969)

Let $a_i, b_i \in Q$ for $1 \le i \le m$. Assume that

$$\sum_{i=1}^m a_i x b_i = 0$$

for all $x \in R$. If a_1, \ldots, a_m are C-independent, then $b_i = 0$.

- The spirit of Kharchenko's Theorem and Martindale's Theorem is to reduce the GPI (with automorphisms) as possible as we can.
- Then in the remains, each "block" will be also an identity of R.

Theorem (Martindale, 1969)

Let $a_i, b_i \in Q$ for $1 \le i \le m$. Assume that

$$\sum_{i=1}^m a_i x b_i = 0$$

for all $x \in R$. If a_1, \ldots, a_m are *C*-independent, then $b_i = 0$.

- The spirit of Kharchenko's Theorem and Martindale's Theorem is to reduce the GPI (with automorphisms) as possible as we can.
- Then in the remains, each "block" will be also an identity of *R*.

Theorem (Martindale, 1969)

Let $a_i, b_i \in Q$ for $1 \le i \le m$. Assume that

$$\sum_{i=1}^m a_i x b_i = 0$$

for all $x \in R$. If a_1, \ldots, a_m are *C*-independent, then $b_i = 0$.

- The spirit of Kharchenko's Theorem and Martindale's Theorem is to reduce the GPI (with automorphisms) as possible as we can.
- Then in the remains, each "block" will be also an identity of *R*.

- Collect the terms depending on the automorphism acting on x. Say σ₁, · · · , σ_m.
- $\sum_{i=1}^{m} \sum_{j=1}^{n_i} a_{ij}\sigma_i(x)b_{ij} = 0.$
- If $\sigma_1, \dots, \sigma_m$ are not mutually outer, then $\sigma_i \sigma_j^{-1}$ is X-inner for some $i \neq j$. Say $\sigma_i \sigma_j^{-1} = \iota(v)$. Then $\sigma_i = \iota(v)\sigma_j$, namely $\sigma_i(x) = v\sigma_j(x)v^{-1}$.
- Substitute $\sigma_i(x)$ with $v\sigma_j(x)v^{-1}$ in the current identity.
- Continue this process until the remaining automorphisms are mutually outer.
- In the remains, each "block" will be a (shorter) identity with some σ_i(x).
- More precisely, block means the sum of the terms with x acting by a fixed automorphism σ_i.
- Set x = σ_i⁻¹(y), respectively, in the blocks. Then the assertion of Kharchenko's Theorem appears.

- Collect the terms depending on the automorphism acting on x. Say σ₁, · · · , σ_m.
- $\sum_{i=1}^{m} \sum_{j=1}^{n_i} a_{ij}\sigma_i(x)b_{ij} = 0.$
- If $\sigma_1, \dots, \sigma_m$ are not mutually outer, then $\sigma_i \sigma_j^{-1}$ is X-inner for some $i \neq j$. Say $\sigma_i \sigma_j^{-1} = \iota(v)$. Then $\sigma_i = \iota(v)\sigma_j$, namely $\sigma_i(x) = v\sigma_j(x)v^{-1}$.
- Substitute $\sigma_i(x)$ with $v\sigma_j(x)v^{-1}$ in the current identity.
- Continue this process until the remaining automorphisms are mutually outer.
- In the remains, each "block" will be a (shorter) identity with some σ_i(x).
- More precisely, block means the sum of the terms with x acting by a fixed automorphism σ_i.
- Set x = σ_i⁻¹(y), respectively, in the blocks. Then the assertion of Kharchenko's Theorem appears.

- Collect the terms depending on the automorphism acting on x. Say σ₁, · · · , σ_m.
- $\sum_{i=1}^{m} \sum_{j=1}^{n_i} a_{ij} \sigma_i(x) b_{ij} = 0.$
- If $\sigma_1, \dots, \sigma_m$ are not mutually outer, then $\sigma_i \sigma_j^{-1}$ is X-inner for some $i \neq j$. Say $\sigma_i \sigma_j^{-1} = \iota(v)$. Then $\sigma_i = \iota(v)\sigma_j$, namely $\sigma_i(x) = v\sigma_j(x)v^{-1}$.
- Substitute $\sigma_i(x)$ with $v\sigma_j(x)v^{-1}$ in the current identity.
- Continue this process until the remaining automorphisms are mutually outer.
- In the remains, each "block" will be a (shorter) identity with some σ_i(x).
- More precisely, block means the sum of the terms with x acting by a fixed automorphism σ_i.
- Set x = σ_i⁻¹(y), respectively, in the blocks. Then the assertion of Kharchenko's Theorem appears.

- Collect the terms depending on the automorphism acting on x. Say σ₁, · · · , σ_m.
- $\sum_{i=1}^{m} \sum_{j=1}^{n_i} a_{ij} \sigma_i(x) b_{ij} = 0.$
- If $\sigma_1, \dots, \sigma_m$ are not mutually outer, then $\sigma_i \sigma_j^{-1}$ is X-inner for some $i \neq j$. Say $\sigma_i \sigma_j^{-1} = \iota(v)$. Then $\sigma_i = \iota(v)\sigma_j$, namely $\sigma_i(x) = v\sigma_j(x)v^{-1}$.
- Substitute $\sigma_i(x)$ with $v\sigma_j(x)v^{-1}$ in the current identity.
- Continue this process until the remaining automorphisms are mutually outer.
- In the remains, each "block" will be a (shorter) identity with some $\sigma_i(x)$.
- More precisely, block means the sum of the terms with x acting by a fixed automorphism σ_i.
- Set x = σ_i⁻¹(y), respectively, in the blocks. Then the assertion of Kharchenko's Theorem appears.

- Collect the terms depending on the automorphism acting on x. Say σ₁, · · · , σ_m.
- $\sum_{i=1}^{m} \sum_{j=1}^{n_i} a_{ij} \sigma_i(x) b_{ij} = 0.$
- If $\sigma_1, \dots, \sigma_m$ are not mutually outer, then $\sigma_i \sigma_j^{-1}$ is X-inner for some $i \neq j$. Say $\sigma_i \sigma_j^{-1} = \iota(v)$. Then $\sigma_i = \iota(v)\sigma_j$, namely $\sigma_i(x) = v\sigma_j(x)v^{-1}$.
- Substitute $\sigma_i(x)$ with $v\sigma_j(x)v^{-1}$ in the current identity.
- Continue this process until the remaining automorphisms are mutually outer.
- In the remains, each "block" will be a (shorter) identity with some $\sigma_i(x)$.
- More precisely, block means the sum of the terms with x acting by a fixed automorphism σ_i .
- Set $x = \sigma_i^{-1}(y)$, respectively, in the blocks. Then the assertion of Kharchenko's Theorem appears.

- Collect the terms depending on the automorphism acting on x. Say σ₁, · · · , σ_m.
- $\sum_{i=1}^{m} \sum_{j=1}^{n_i} a_{ij}\sigma_i(x)b_{ij} = 0.$
- If $\sigma_1, \dots, \sigma_m$ are not mutually outer, then $\sigma_i \sigma_j^{-1}$ is X-inner for some $i \neq j$. Say $\sigma_i \sigma_j^{-1} = \iota(v)$. Then $\sigma_i = \iota(v)\sigma_j$, namely $\sigma_i(x) = v\sigma_j(x)v^{-1}$.
- Substitute $\sigma_i(x)$ with $v\sigma_j(x)v^{-1}$ in the current identity.
- Continue this process until the remaining automorphisms are mutually outer.
- In the remains, each "block" will be a (shorter) identity with some $\sigma_i(x)$.
- More precisely, block means the sum of the terms with x acting by a fixed automorphism σ_i .
- Set $x = \sigma_i^{-1}(y)$, respectively, in the blocks. Then the assertion of Kharchenko's Theorem appears.

- Collect the terms depending on the automorphism acting on x. Say σ₁, · · · , σ_m.
- $\sum_{i=1}^{m} \sum_{j=1}^{n_i} a_{ij}\sigma_i(x)b_{ij} = 0.$
- If $\sigma_1, \dots, \sigma_m$ are not mutually outer, then $\sigma_i \sigma_j^{-1}$ is X-inner for some $i \neq j$. Say $\sigma_i \sigma_j^{-1} = \iota(v)$. Then $\sigma_i = \iota(v)\sigma_j$, namely $\sigma_i(x) = v\sigma_j(x)v^{-1}$.
- Substitute $\sigma_i(x)$ with $v\sigma_j(x)v^{-1}$ in the current identity.
- Continue this process until the remaining automorphisms are mutually outer.
- In the remains, each "block" will be a (shorter) identity with some $\sigma_i(x)$.
- More precisely, block means the sum of the terms with x acting by a fixed automorphism σ_i .
- Set $x = \sigma_i^{-1}(y)$, respectively, in the blocks. Then the assertion of Kharchenko's Theorem appears.

- Collect the terms depending on the automorphism acting on x. Say σ₁, · · · , σ_m.
- $\sum_{i=1}^{m} \sum_{j=1}^{n_i} a_{ij}\sigma_i(x)b_{ij} = 0.$
- If $\sigma_1, \dots, \sigma_m$ are not mutually outer, then $\sigma_i \sigma_j^{-1}$ is X-inner for some $i \neq j$. Say $\sigma_i \sigma_j^{-1} = \iota(v)$. Then $\sigma_i = \iota(v)\sigma_j$, namely $\sigma_i(x) = v\sigma_j(x)v^{-1}$.
- Substitute $\sigma_i(x)$ with $v\sigma_j(x)v^{-1}$ in the current identity.
- Continue this process until the remaining automorphisms are mutually outer.
- In the remains, each "block" will be a (shorter) identity with some $\sigma_i(x)$.
- More precisely, block means the sum of the terms with x acting by a fixed automorphism σ_i .
- Set $x = \sigma_i^{-1}(y)$, respectively, in the blocks. Then the assertion of Kharchenko's Theorem appears.

- Collect the terms depending on the left coefficient. Say the left coefficients are a_1, \dots, a_m .
- $\sum_{i=1}^{m} a_i x b_i = 0.$

 Collect the terms depending on the left coefficient. Say the left coefficients are a₁, · · · , a_m.

•
$$\sum_{i=1}^m a_i x b_i = 0.$$

- Assume a_1, \dots, a_m are not *C*-independent. Say $a_1 = \alpha_2 a_2 + \dots + \alpha_m a_m$.
- Substitute a_1 with $\alpha_2 a_2 + \cdots + \alpha_m a_m$ in the current identity.
- Continue this process until the remaining left coefficients are *C*-independent.
- In the remains, each "block" will be a (shorter) identity with some left coefficient a_i.
- More precisely, block means a_iXb_i.
- Namely, a_iXb_i = 0. Then since R is prime, it turns out b_i = 0. The assertion of Martindale's Theorem appears.

• Collect the terms depending on the left coefficient. Say the left coefficients are a_1, \dots, a_m .

•
$$\sum_{i=1}^m a_i x b_i = 0.$$

- Assume a_1, \dots, a_m are not *C*-independent. Say $a_1 = \alpha_2 a_2 + \dots + \alpha_m a_m$.
- Substitute a_1 with $\alpha_2 a_2 + \cdots + \alpha_m a_m$ in the current identity.
- Continue this process until the remaining left coefficients are *C*-independent.
- In the remains, each "block" will be a (shorter) identity with some left coefficient *a_i*.
- More precisely, block means a_iXb_i.
- Namely, a_iXb_i = 0. Then since R is prime, it turns out b_i = 0. The assertion of Martindale's Theorem appears.

 Collect the terms depending on the left coefficient. Say the left coefficients are a₁, · · · , a_m.

•
$$\sum_{i=1}^m a_i x b_i = 0.$$

- Assume a_1, \dots, a_m are not *C*-independent. Say $a_1 = \alpha_2 a_2 + \dots + \alpha_m a_m$.
- Substitute a_1 with $\alpha_2 a_2 + \cdots + \alpha_m a_m$ in the current identity.
- Continue this process until the remaining left coefficients are *C*-independent.
- In the remains, each "block" will be a (shorter) identity with some left coefficient *a_i*.
- More precisely, block means *a_iXb_i*.
- Namely, a_iXb_i = 0. Then since R is prime, it turns out b_i = 0. The assertion of Martindale's Theorem appears.
•
$$\sum_{i=1}^m a_i x b_i = 0.$$

- Assume a_1, \dots, a_m are not *C*-independent. Say $a_1 = \alpha_2 a_2 + \dots + \alpha_m a_m$.
- Substitute a_1 with $\alpha_2 a_2 + \cdots + \alpha_m a_m$ in the current identity.
- Continue this process until the remaining left coefficients are *C*-independent.
- In the remains, each "block" will be a (shorter) identity with some left coefficient *a_i*.
- More precisely, block means $a_i X b_i$.
- Namely, a_iXb_i = 0. Then since R is prime, it turns out b_i = 0. The assertion of Martindale's Theorem appears.

•
$$\sum_{i=1}^m a_i x b_i = 0.$$

- Assume a_1, \dots, a_m are not *C*-independent. Say $a_1 = \alpha_2 a_2 + \dots + \alpha_m a_m$.
- Substitute a_1 with $\alpha_2 a_2 + \cdots + \alpha_m a_m$ in the current identity.
- Continue this process until the remaining left coefficients are *C*-independent.
- In the remains, each "block" will be a (shorter) identity with some left coefficient *a_i*.
- More precisely, block means $a_i X b_i$.
- Namely, a_iXb_i = 0. Then since R is prime, it turns out b_i = 0. The assertion of Martindale's Theorem appears.

•
$$\sum_{i=1}^m a_i x b_i = 0.$$

- Assume a_1, \dots, a_m are not *C*-independent. Say $a_1 = \alpha_2 a_2 + \dots + \alpha_m a_m$.
- Substitute a_1 with $\alpha_2 a_2 + \cdots + \alpha_m a_m$ in the current identity.
- Continue this process until the remaining left coefficients are *C*-independent.
- In the remains, each "block" will be a (shorter) identity with some left coefficient *a_i*.
- More precisely, block means $a_i X b_i$.
- Namely, a_iXb_i = 0. Then since R is prime, it turns out b_i = 0. The assertion of Martindale's Theorem appears.

•
$$\sum_{i=1}^m a_i x b_i = 0.$$

- Assume a_1, \dots, a_m are not *C*-independent. Say $a_1 = \alpha_2 a_2 + \dots + \alpha_m a_m$.
- Substitute a_1 with $\alpha_2 a_2 + \cdots + \alpha_m a_m$ in the current identity.
- Continue this process until the remaining left coefficients are *C*-independent.
- In the remains, each "block" will be a (shorter) identity with some left coefficient *a_i*.
- More precisely, block means $a_i X b_i$.
- Namely, a_iXb_i = 0. Then since R is prime, it turns out b_i = 0. The assertion of Martindale's Theorem appears.

Let σ and τ be automorphisms of R and assume that σ is *C*-algebraic. Then $R^{(\sigma)} \subseteq R^{(\tau)}$ if and only if $\tau(x) = v\sigma^i(x)v^{-1}$ for all $x \in R$, where *i* is an integer and where *v* is in the centralizer of $R^{(\sigma)}$ in *Q*.

Sketch of Proof

- σ is algebraic and then (by Chuang and Lee's method) one construct a polynomial expression ψ(x) ∈ R^(σ) for all x ∈ J ⊲ R.
- By assumption, $\tau(\psi(x)) = \psi(x)$.
- Apply Kharchenko's Theorem.
- Apply Martindale's Theorem.

Let σ and τ be automorphisms of R and assume that σ is *C*-algebraic. Then $R^{(\sigma)} \subseteq R^{(\tau)}$ if and only if $\tau(x) = v\sigma^i(x)v^{-1}$ for all $x \in R$, where *i* is an integer and where *v* is in the centralizer of $R^{(\sigma)}$ in *Q*.

Sketch of Proof

The implication " \Rightarrow " is trivial. So we assume $R^{(\sigma)} \subseteq R^{(\tau)}$.

σ is algebraic and then (by Chuang and Lee's method) one construct a polynomial expression ψ(x) ∈ R^(σ) for a x ∈ J ⊲ R.

• By assumption, $\tau(\psi(x)) = \psi(x)$.

Apply Kharchenko's Theorem.

Let σ and τ be automorphisms of R and assume that σ is *C*-algebraic. Then $R^{(\sigma)} \subseteq R^{(\tau)}$ if and only if $\tau(x) = v\sigma^i(x)v^{-1}$ for all $x \in R$, where *i* is an integer and where *v* is in the centralizer of $R^{(\sigma)}$ in *Q*.

Sketch of Proof

- σ is algebraic and then (by Chuang and Lee's method) one construct a polynomial expression $\psi(x) \in \mathbb{R}^{(\sigma)}$ for all $x \in J \triangleleft \mathbb{R}$.
- ⁽²⁾ By assumption, $au(\psi(x)) = \psi(x)$.
- Apply Kharchenko's Theorem.
- Apply Martindale's Theorem.

Let σ and τ be automorphisms of R and assume that σ is *C*-algebraic. Then $R^{(\sigma)} \subseteq R^{(\tau)}$ if and only if $\tau(x) = v\sigma^i(x)v^{-1}$ for all $x \in R$, where *i* is an integer and where *v* is in the centralizer of $R^{(\sigma)}$ in *Q*.

Sketch of Proof

- σ is algebraic and then (by Chuang and Lee's method) one construct a polynomial expression $\psi(x) \in \mathbb{R}^{(\sigma)}$ for all $x \in J \triangleleft \mathbb{R}$.
- **2** By assumption, $\tau(\psi(x)) = \psi(x)$.
 - 3 Apply Kharchenko's Theorem.
 - Apply Martindale's Theorem.

Let σ and τ be automorphisms of R and assume that σ is *C*-algebraic. Then $R^{(\sigma)} \subseteq R^{(\tau)}$ if and only if $\tau(x) = v\sigma^i(x)v^{-1}$ for all $x \in R$, where *i* is an integer and where *v* is in the centralizer of $R^{(\sigma)}$ in *Q*.

Sketch of Proof

- σ is algebraic and then (by Chuang and Lee's method) one construct a polynomial expression $\psi(x) \in \mathbb{R}^{(\sigma)}$ for all $x \in J \triangleleft \mathbb{R}$.
- **2** By assumption, $\tau(\psi(x)) = \psi(x)$.
- Apply Kharchenko's Theorem.
- Apply Martindale's Theorem.

Let σ and τ be automorphisms of R and assume that σ is *C*-algebraic. Then $R^{(\sigma)} \subseteq R^{(\tau)}$ if and only if $\tau(x) = v\sigma^i(x)v^{-1}$ for all $x \in R$, where *i* is an integer and where *v* is in the centralizer of $R^{(\sigma)}$ in *Q*.

Sketch of Proof

- σ is algebraic and then (by Chuang and Lee's method) one construct a polynomial expression ψ(x) ∈ R^(σ) for all x ∈ J ⊲ R.
- **2** By assumption, $\tau(\psi(x)) = \psi(x)$.
- Apply Kharchenko's Theorem.
- Apply Martindale's Theorem.

$$R^{(\sigma)} \subseteq R^{(\tau)}$$
. σ is X-outer and $\sigma^2 = \iota(1) = I$.

• For all
$$x \in R$$
, let $\psi(x) = x + \sigma(x)$.

•
$$\sigma(x + \sigma(x)) = \sigma(x) + x$$
. So $\psi(x) \in R^{(\sigma)} \subseteq R^{(\tau)}$

• Thus
$$\tau(\psi(x)) = \psi(x)$$
, so $\tau(x) + \tau(\sigma(x)) = x + \sigma(x)$.

If
$$\tau, \tau \sigma$$
 are all X-outer, then $I, \sigma, \tau, \tau \sigma$ are mutually outer.

- Applying Kharchenko's Theorem to (3), X = 0 is an identity for R, a contradiction.
 - Thus either τ or $\tau\sigma$ is X-inner. This implies the result.

$$R^{(\sigma)} \subseteq R^{(\tau)}$$
. σ is X-outer and $\sigma^2 = \iota(1) = I$.

• For all
$$x \in R$$
, let $\psi(x) = x + \sigma(x)$.

(a)
$$\sigma(x + \sigma(x)) = \sigma(x) + x$$
. So $\psi(x) \in R^{(\sigma)} \subseteq R^{(\tau)}$

- Thus $\tau(\psi(x)) = \psi(x)$, so $\tau(x) + \tau(\sigma(x)) = x + \sigma(x)$.
- If $au, au \sigma$ are all X-outer, then $I, \sigma, au, au \sigma$ are mutually outer.
- Applying Kharchenko's Theorem to (3), X = 0 is an identity for R, a contradiction.
- Thus either τ or $\tau\sigma$ is X-inner. This implies the result.

$$R^{(\sigma)} \subseteq R^{(\tau)}$$
. σ is X-outer and $\sigma^2 = \iota(1) = I$.

- For all $x \in R$, let $\psi(x) = x + \sigma(x)$.
- $\ \ \, \bullet \ \ \, o(x+\sigma(x))=\sigma(x)+x. \ \ \, \mathsf{So} \ \, \psi(x)\in R^{(\sigma)}\subseteq R^{(\tau)}$
- 3 Thus $\tau(\psi(x)) = \psi(x)$, so $\tau(x) + \tau(\sigma(x)) = x + \sigma(x)$.
- If $au, au \sigma$ are all X-outer, then $I, \sigma, au, au \sigma$ are mutually outer.
- Applying Kharchenko's Theorem to (3), X = 0 is an identity for R, a contradiction.
- Thus either τ or $\tau\sigma$ is X-inner. This implies the result.

$$R^{(\sigma)} \subseteq R^{(\tau)}$$
. σ is X-outer and $\sigma^2 = \iota(1) = I$.

Proof.

• For all
$$x \in R$$
, let $\psi(x) = x + \sigma(x)$.

(a)
$$\sigma(x + \sigma(x)) = \sigma(x) + x$$
. So $\psi(x) \in R^{(\sigma)} \subseteq R^{(\tau)}$

3 Thus
$$\tau(\psi(x)) = \psi(x)$$
, so $\tau(x) + \tau(\sigma(x)) = x + \sigma(x)$.

If
$$au, au\sigma$$
 are all X-outer, then $I, \sigma, au, au\sigma$ are mutually outer.

• Thus either τ or $\tau\sigma$ is X-inner. This implies the result.

$$R^{(\sigma)} \subseteq R^{(\tau)}$$
. σ is X-outer and $\sigma^2 = \iota(1) = I$.

Proof.

• For all
$$x \in R$$
, let $\psi(x) = x + \sigma(x)$.

3
$$\sigma(x + \sigma(x)) = \sigma(x) + x$$
. So $\psi(x) \in R^{(\sigma)} \subseteq R^{(\tau)}$

3 Thus
$$\tau(\psi(\mathbf{x})) = \psi(\mathbf{x})$$
, so $\tau(\mathbf{x}) + \tau(\sigma(\mathbf{x})) = \mathbf{x} + \sigma(\mathbf{x})$.

If
$$au, au \sigma$$
 are all X-outer, then $I, \sigma, au, au \sigma$ are mutually outer.

• Thus either τ or $\tau\sigma$ is X-inner. This implies the result.

$$R^{(\sigma)} \subseteq R^{(\tau)}$$
. σ is X-outer and $\sigma^2 = \iota(1) = I$.

Proof.

• For all
$$x \in R$$
, let $\psi(x) = x + \sigma(x)$.

3
$$\sigma(x + \sigma(x)) = \sigma(x) + x$$
. So $\psi(x) \in R^{(\sigma)} \subseteq R^{(\tau)}$

3 Thus
$$\tau(\psi(\mathbf{x})) = \psi(\mathbf{x})$$
, so $\tau(\mathbf{x}) + \tau(\sigma(\mathbf{x})) = \mathbf{x} + \sigma(\mathbf{x})$.

If $au, au \sigma$ are all X-outer, then $I, \sigma, au, au \sigma$ are mutually outer.

- Applying Kharchenko's Theorem to (3), X = 0 is an identity for R, a contradiction.
- Thus either τ or $\tau\sigma$ is X-inner. This implies the result.

$$R^{(\sigma)} \subseteq R^{(\tau)}$$
. σ is X-outer and $\sigma^2 = \iota(1) = I$.

- For all $x \in R$, let $\psi(x) = x + \sigma(x)$.
- $\ \, { o } \ \, \sigma(x+\sigma(x))=\sigma(x)+x. \ \, {\rm So} \ \, \psi(x)\in R^{(\sigma)}\subseteq R^{(\tau)}$
- So Thus $\tau(\psi(x)) = \psi(x)$, so $\tau(x) + \tau(\sigma(x)) = x + \sigma(x)$.
- If $\tau, \tau \sigma$ are all X-outer, then $I, \sigma, \tau, \tau \sigma$ are mutually outer.
- Applying Kharchenko's Theorem to (3), X = 0 is an identity for R, a contradiction.
- Thus either τ or $\tau\sigma$ is X-inner. This implies the result.

$$R^{(\sigma)} \subseteq R^{(\tau)}$$
. σ is X-outer and $\sigma^2 = \iota(1) = I$.

- For all $x \in R$, let $\psi(x) = x + \sigma(x)$.
- $\ \, { o } \ \, \sigma(x+\sigma(x))=\sigma(x)+x. \ \, {\rm So} \ \, \psi(x)\in R^{(\sigma)}\subseteq R^{(\tau)}$
- So Thus $\tau(\psi(x)) = \psi(x)$, so $\tau(x) + \tau(\sigma(x)) = x + \sigma(x)$.
- If $\tau, \tau \sigma$ are all X-outer, then $I, \sigma, \tau, \tau \sigma$ are mutually outer.
- Applying Kharchenko's Theorem to (3), X = 0 is an identity for R, a contradiction.
- Thus either au or $au\sigma$ is X-inner. This implies the result.

$$R^{(\sigma)} \subseteq R^{(\tau)}$$
. σ is X-outer and $\sigma^2 = \iota(1) = I$.

• For all
$$x \in R$$
, let $\psi(x) = x + \sigma(x)$.

3 Thus
$$\tau(\psi(\mathbf{x})) = \psi(\mathbf{x})$$
, so $\tau(\mathbf{x}) + \tau(\sigma(\mathbf{x})) = \mathbf{x} + \sigma(\mathbf{x})$.

- If $\tau, \tau \sigma$ are all X-outer, then $I, \sigma, \tau, \tau \sigma$ are mutually outer.
- Solution Applying Kharchenko's Theorem to (3), X = 0 is an identity for R, a contradiction.
- **()** Thus either au or $au\sigma$ is X-inner. This implies the result.

$$R^{(\sigma)} \subseteq R^{(\tau)}$$
. σ is X-outer and $\sigma^2 = \iota(1) = I$.

- For all $x \in R$, let $\psi(x) = x + \sigma(x)$.
- \circ $\sigma(x + \sigma(x)) = \sigma(x) + x$. So $\psi(x) \in R^{(\sigma)} \subseteq R^{(\tau)}$
- So Thus $\tau(\psi(x)) = \psi(x)$, so $\tau(x) + \tau(\sigma(x)) = x + \sigma(x)$.
- If $\tau, \tau \sigma$ are all X-outer, then $I, \sigma, \tau, \tau \sigma$ are mutually outer.
- Solution Applying Kharchenko's Theorem to (3), X = 0 is an identity for R, a contradiction.
- Thus either au or $au\sigma$ is X-inner. This implies the result.

$$R^{(\sigma)} \subseteq R^{(\tau)}$$
. σ is X-outer and $\sigma^2 = \iota(1) = I$.

- For all $x \in R$, let $\psi(x) = x + \sigma(x)$.
- \circ $\sigma(x + \sigma(x)) = \sigma(x) + x$. So $\psi(x) \in R^{(\sigma)} \subseteq R^{(\tau)}$
- So Thus $\tau(\psi(x)) = \psi(x)$, so $\tau(x) + \tau(\sigma(x)) = x + \sigma(x)$.
- If $\tau, \tau \sigma$ are all X-outer, then $I, \sigma, \tau, \tau \sigma$ are mutually outer.
- Solution Applying Kharchenko's Theorem to (3), X = 0 is an identity for R, a contradiction.
- Thus either τ or $\tau\sigma$ is X-inner. This implies the result.

$$R^{(\sigma)} \subseteq R^{(\tau)}$$
. σ is X-outer and $\sigma^2 = \iota(1) = I$.

- For all $x \in R$, let $\psi(x) = x + \sigma(x)$.
- \circ $\sigma(x + \sigma(x)) = \sigma(x) + x$. So $\psi(x) \in R^{(\sigma)} \subseteq R^{(\tau)}$
- So Thus $\tau(\psi(x)) = \psi(x)$, so $\tau(x) + \tau(\sigma(x)) = x + \sigma(x)$.
- If $\tau, \tau \sigma$ are all X-outer, then $I, \sigma, \tau, \tau \sigma$ are mutually outer.
- Solution Applying Kharchenko's Theorem to (3), X = 0 is an identity for R, a contradiction.
- Thus either τ or $\tau\sigma$ is X-inner. This implies the result.

 $R^{(\sigma)} \subseteq R^{(\tau)}$. σ, σ^2 are X-outer and $\sigma^3 = \iota(u)$, $u^2 + u + 1 = 0$.

- $\sigma(u) = u$ by minimality of the algebraic relation.
- By Chuang and Lee's construction,

$$\begin{array}{rcl} (x) &=& x &+& uxu^{-1} &+& ux \\ &+& \sigma(x) &+& u\sigma(x)u^{-1} &+& u\sigma(x) \\ &+& \sigma^2(x) &+& u\sigma^2(x)u^{-1} &+& u\sigma^2(x) \end{array}$$

- $\sigma(\psi(x)) = \psi(x)$ and then $\tau(\psi(x)) = \psi(x)$.
- If $\tau, \tau\sigma, \tau\sigma^2$ are all X-outer, then $I, \sigma, \sigma^2, \tau, \tau\sigma, \tau\sigma^2$ are mutually outer.
- By Kharchenko's Theorem, $1 \cdot X \cdot 1 + u \cdot X \cdot (u^{-1} + 1) = 0$.
 - By Martindale' Theorem, $1 = 0, \rightarrow \leftarrow$.

$$R^{(\sigma)} \subseteq R^{(\tau)}$$
. σ, σ^2 are X-outer and $\sigma^3 = \iota(u)$, $u^2 + u + 1 = 0$.

- $\sigma(u) = u$ by minimality of the algebraic relation.
 - By Martindale' Theorem, $1=0, \rightarrow \leftarrow$

$$R^{(\sigma)} \subseteq R^{(\tau)}$$
. σ, σ^2 are X-outer and $\sigma^3 = \iota(u)$, $u^2 + u + 1 = 0$.

Proof.

- $\sigma(u) = u$ by minimality of the algebraic relation.
- Ø By Chuang and Lee's construction,

 $\psi(x) = x + uxu^{-1} + ux$ $+ \sigma(x) + u\sigma(x)u^{-1} + u\sigma(x)$ $+ \sigma^{2}(x) + u\sigma^{2}(x)u^{-1} + u\sigma^{2}(x)$

- $\sigma(\psi(x)) = \psi(x)$ and then $\tau(\psi(x)) = \psi(x)$.
- If $\tau, \tau \sigma, \tau \sigma^2$ are all X-outer, then $I, \sigma, \sigma^2, \tau, \tau \sigma, \tau \sigma^2$ are mutually outer.
- By Kharchenko's Theorem, $1 \cdot X \cdot 1 + u \cdot X \cdot (u^{-1} + 1) = 0$.
- By Martindale' Theorem, $1 = 0, \rightarrow \leftarrow$

$$R^{(\sigma)} \subseteq R^{(\tau)}$$
. σ, σ^2 are X-outer and $\sigma^3 = \iota(u)$, $u^2 + u + 1 = 0$.

Proof.

- $\sigma(u) = u$ by minimality of the algebraic relation.
- Ø By Chuang and Lee's construction,

$$\psi(\mathbf{x}) = \mathbf{x} + u\mathbf{x}u^{-1} + u\mathbf{x} + \sigma(\mathbf{x}) + u\sigma(\mathbf{x})u^{-1} + u\sigma(\mathbf{x}) + \sigma^{2}(\mathbf{x}) + u\sigma^{2}(\mathbf{x})u^{-1} + u\sigma^{2}(\mathbf{x})$$

3 $\sigma(\psi(x)) = \psi(x)$ and then $\tau(\psi(x)) = \psi(x)$.

- If $\tau, \tau\sigma, \tau\sigma^2$ are all X-outer, then $I, \sigma, \sigma^2, \tau, \tau\sigma, \tau\sigma^2$ are mutually outer.
- By Kharchenko's Theorem, $1 \cdot X \cdot 1 + u \cdot X \cdot (u^{-1} + 1) = 0.$
- By Martindale' Theorem, $1 = 0, \rightarrow \leftarrow$

$$R^{(\sigma)} \subseteq R^{(\tau)}$$
. σ, σ^2 are X-outer and $\sigma^3 = \iota(u)$, $u^2 + u + 1 = 0$.

- $\sigma(u) = u$ by minimality of the algebraic relation.
- Ø By Chuang and Lee's construction,

$$b(x) = x + uxu^{-1} + ux + \sigma(x) + u\sigma(x)u^{-1} + u\sigma(x) + \sigma^{2}(x) + u\sigma^{2}(x)u^{-1} + u\sigma^{2}(x)$$

- $\sigma(\psi(x)) = \psi(x)$ and then $\tau(\psi(x)) = \psi(x)$.
- If $\tau, \tau\sigma, \tau\sigma^2$ are all X-outer, then $I, \sigma, \sigma^2, \tau, \tau\sigma, \tau\sigma^2$ are mutually outer.
- **()** By Kharchenko's Theorem, $1 \cdot X \cdot 1 + u \cdot X \cdot (u^{-1} + 1) = 0$.
- By Martindale' Theorem, 1= 0, $ightarrow \epsilon$

$$R^{(\sigma)} \subseteq R^{(\tau)}$$
. σ, σ^2 are X-outer and $\sigma^3 = \iota(u)$, $u^2 + u + 1 = 0$.

- $\sigma(u) = u$ by minimality of the algebraic relation.
- Ø By Chuang and Lee's construction,

$$\psi(x) = x + uxu^{-1} + ux + \sigma(x) + u\sigma(x)u^{-1} + u\sigma(x) + \sigma^{2}(x) + u\sigma^{2}(x)u^{-1} + u\sigma^{2}(x)$$

- $\sigma(\psi(x)) = \psi(x)$ and then $\tau(\psi(x)) = \psi(x)$.
- **(a)** If $\tau, \tau \sigma, \tau \sigma^2$ are all X-outer, then $I, \sigma, \sigma^2, \tau, \tau \sigma, \tau \sigma^2$ are mutually outer.
- **③** By Kharchenko's Theorem, $1 \cdot X \cdot 1 + u \cdot X \cdot (u^{-1} + 1) = 0$.
- By Martindale' Theorem, 1= 0, $ightarrow \epsilon$

$$R^{(\sigma)} \subseteq R^{(\tau)}$$
. σ, σ^2 are X-outer and $\sigma^3 = \iota(u)$, $u^2 + u + 1 = 0$.

- $\sigma(u) = u$ by minimality of the algebraic relation.
- Ø By Chuang and Lee's construction,

$$b(x) = x + uxu^{-1} + ux + \sigma(x) + u\sigma(x)u^{-1} + u\sigma(x) + \sigma^{2}(x) + u\sigma^{2}(x)u^{-1} + u\sigma^{2}(x)$$

- $\sigma(\psi(x)) = \psi(x)$ and then $\tau(\psi(x)) = \psi(x)$.
- $\label{eq:linear} \bullet \ \ \, If \ \tau,\tau\sigma,\tau\sigma^2 \ {\rm are \ all \ X-outer, \ then \ } I,\sigma,\sigma^2,\tau,\tau\sigma,\tau\sigma^2 \ {\rm are \ mutually \ outer. }$
- By Kharchenko's Theorem, 1 · X · 1 + u · X · (u⁻¹ + 1) = 0.
 By Martindale' Theorem, 1 = 0, → ←.

$$R^{(\sigma)} \subseteq R^{(\tau)}$$
. σ, σ^2 are X-outer and $\sigma^3 = \iota(u)$, $u^2 + u + 1 = 0$.

- $\sigma(u) = u$ by minimality of the algebraic relation.
- Ø By Chuang and Lee's construction,

$$b(x) = x + uxu^{-1} + ux + uxu^{-1} + ux + \sigma(x) + u\sigma(x)u^{-1} + u\sigma(x) + \sigma^{2}(x) + u\sigma^{2}(x)u^{-1} + u\sigma^{2}(x)$$

- $\sigma(\psi(x)) = \psi(x)$ and then $\tau(\psi(x)) = \psi(x)$.
- $\label{eq:linear} \bullet \ \ \, If \ \tau,\tau\sigma,\tau\sigma^2 \ {\rm are \ all \ X-outer, \ then \ } I,\sigma,\sigma^2,\tau,\tau\sigma,\tau\sigma^2 \ {\rm are \ mutually \ outer. }$
- **5** By Kharchenko's Theorem, $1 \cdot X \cdot 1 + u \cdot X \cdot (u^{-1} + 1) = 0$.
 - **)** By Martindale' Theorem, $1=0, o \leftarrow$

$$R^{(\sigma)} \subseteq R^{(\tau)}$$
. σ, σ^2 are X-outer and $\sigma^3 = \iota(u)$, $u^2 + u + 1 = 0$.

- $\sigma(u) = u$ by minimality of the algebraic relation.
- Ø By Chuang and Lee's construction,

$$b(x) = x + uxu^{-1} + ux + \sigma(x) + \sigma(x)u^{-1} + u\sigma(x) + \sigma^{2}(x) + u\sigma^{2}(x)u^{-1} + u\sigma^{2}(x)$$

- $\sigma(\psi(x)) = \psi(x)$ and then $\tau(\psi(x)) = \psi(x)$.
- $\label{eq:linear} \bullet \ \ \, If \ \tau,\tau\sigma,\tau\sigma^2 \ {\rm are \ all \ X-outer, \ then \ } I,\sigma,\sigma^2,\tau,\tau\sigma,\tau\sigma^2 \ {\rm are \ mutually \ outer. }$
- So By Kharchenko's Theorem, $1 \cdot X \cdot 1 + u \cdot X \cdot (u^{-1} + 1) = 0$.
- ${f ar{o}}$ By Martindale' Theorem, 1= 0, ightarrow .

$$R^{(\sigma)} \subseteq R^{(\tau)}$$
. σ, σ^2 are X-outer and $\sigma^3 = \iota(u)$, $u^2 + u + 1 = 0$.

- $\sigma(u) = u$ by minimality of the algebraic relation.
- Ø By Chuang and Lee's construction,

$$b(x) = x + uxu^{-1} + ux + \sigma(x) + \sigma(x)u^{-1} + u\sigma(x) + \sigma^{2}(x) + u\sigma^{2}(x)u^{-1} + u\sigma^{2}(x)$$

- $\sigma(\psi(x)) = \psi(x)$ and then $\tau(\psi(x)) = \psi(x)$.
- $\label{eq:linear} \bullet \ \ \, If \ \tau,\tau\sigma,\tau\sigma^2 \ {\rm are \ all \ X-outer, \ then \ } I,\sigma,\sigma^2,\tau,\tau\sigma,\tau\sigma^2 \ {\rm are \ mutually \ outer. }$
- So By Kharchenko's Theorem, $1 \cdot X \cdot 1 + u \cdot X \cdot (u^{-1} + 1) = 0$.
- By Martindale' Theorem, $1 = 0, \rightarrow \leftarrow$.

$$R^{(\sigma)} \subseteq R^{(\tau)}$$
. σ, σ^2 are X-outer and $\sigma^3 = \iota(u)$, $u^2 + u + 1 = 0$.

- $\sigma(u) = u$ by minimality of the algebraic relation.
- Ø By Chuang and Lee's construction,

$$\begin{aligned}
\psi(x) &= x + uxu^{-1} + ux \\
&+ \sigma(x) + u\sigma(x)u^{-1} + u\sigma(x) \\
&+ \sigma^2(x) + u\sigma^2(x)u^{-1} + u\sigma^2(x)
\end{aligned}$$

- $\sigma(\psi(x)) = \psi(x)$ and then $\tau(\psi(x)) = \psi(x)$.
- $\label{eq:linear} \bullet \ \ \, If \ \tau,\tau\sigma,\tau\sigma^2 \ {\rm are \ all \ X-outer, \ then \ } I,\sigma,\sigma^2,\tau,\tau\sigma,\tau\sigma^2 \ {\rm are \ mutually \ outer. }$
- So By Kharchenko's Theorem, $1 \cdot X \cdot 1 + u \cdot X \cdot (u^{-1} + 1) = 0$.
- By Martindale' Theorem, $1 = 0, \rightarrow \leftarrow$.

$$R^{(\sigma)} \subseteq R^{(\tau)}$$
. σ, σ^2 are X-outer and $\sigma^3 = \iota(u)$, $u^2 + u + 1 = 0$.

- $\sigma(u) = u$ by minimality of the algebraic relation.
- Ø By Chuang and Lee's construction,

$$\begin{aligned}
\psi(x) &= x + uxu^{-1} + ux \\
&+ \sigma(x) + u\sigma(x)u^{-1} + u\sigma(x) \\
&+ \sigma^2(x) + u\sigma^2(x)u^{-1} + u\sigma^2(x)
\end{aligned}$$

- $\sigma(\psi(x)) = \psi(x)$ and then $\tau(\psi(x)) = \psi(x)$.
- $\label{eq:linear} \bullet \ \ \, If \ \tau,\tau\sigma,\tau\sigma^2 \ {\rm are \ all \ X-outer, \ then \ } I,\sigma,\sigma^2,\tau,\tau\sigma,\tau\sigma^2 \ {\rm are \ mutually \ outer. }$
- So By Kharchenko's Theorem, $1 \cdot X \cdot 1 + u \cdot X \cdot (u^{-1} + 1) = 0$.
- By Martindale' Theorem, $1 = 0, \rightarrow \leftarrow$.

📔 Hung-Yuan Chen.

Kernel inclusions of algebraic automorphisms. *Communications in Algebra*, 39(4):1365–1371, 2011.

- Chen-Lian Chuang and Tsiu-Kwen Lee. q-skew derivations and polynomial identities. Manuscripta Math., 116(2):229–243, 2005.
- V. K Kharchenko.

Generalized identities with automorphisms. *Algebra and Logic*, 14(2):132–148, 1975.

Wallace S. Martindale, III. Prime rings satisfying a generalized polynomial iden J. Algebra, 12:576–584, 1969.

📔 Hung-Yuan Chen.

Kernel inclusions of algebraic automorphisms. Communications in Algebra, 39(4):1365–1371, 2011.

- Chen-Lian Chuang and Tsiu-Kwen Lee. q-skew derivations and polynomial identities. Manuscripta Math., 116(2):229–243, 2005.
- 🔋 V. K Kharchenko.

Generalized identities with automorphisms. *Algebra and Logic*, 14(2):132–148, 1975.

Wallace S. Martindale, III.

Prime rings satisfying a generalized polynomial identity. *J. Algebra*, 12:576–584, 1969.
Hung-Yuan Chen.

Kernel inclusions of algebraic automorphisms. Communications in Algebra, 39(4):1365–1371, 2011.

Chen-Lian Chuang and Tsiu-Kwen Lee. q-skew derivations and polynomial identities. Manuscripta Math., 116(2):229–243, 2005.

V. K Kharchenko.

Generalized identities with automorphisms. *Algebra and Logic*, 14(2):132–148, 1975.

Wallace S. Martindale, III.

Prime rings satisfying a generalized polynomial identity. *J. Algebra*, 12:576–584, 1969.

Hung-Yuan Chen.

Kernel inclusions of algebraic automorphisms. Communications in Algebra, 39(4):1365–1371, 2011.

Chen-Lian Chuang and Tsiu-Kwen Lee. q-skew derivations and polynomial identities. Manuscripta Math., 116(2):229–243, 2005.

V. K Kharchenko.

Generalized identities with automorphisms. *Algebra and Logic*, 14(2):132–148, 1975.

Wallace S. Martindale, III. Prime rings satisfying a generalized polynomial identity. J. Algebra, 12:576–584, 1969.