Decompositions of Quotient Rings and *m*-Commuting Maps

Chih-Whi Chen

Department of Mathematics National Taiwan University

July 14th, 2011

• *R* : semiprime ring.

- *R* : semiprime ring.
- Q : symmetric Martindale quotient ring of R.

- *R* : semiprime ring.
- Q : symmetric Martindale quotient ring of R.
- C : extended centroid of R.

ℤ{X̂} the free ℤ-algebra in noncommutative indeterminates in X̂ := {X, X₁, X₂, ...}.

- ℤ{X̂} the free ℤ-algebra in noncommutative indeterminates in X̂ := {X, X₁, X₂, ...}.
- R satisfies $f(X_1,\ldots,X_t)\in\mathbb{Z}\{\hat{X}\}$ if

$$f(r_1,\ldots,r_t)=0$$
 for all $r_i\in R$.

- ℤ{X̂} the free ℤ-algebra in noncommutative indeterminates in X̂ := {X, X₁, X₂, ...}.
- R satisfies $f(X_1,\ldots,X_t)\in\mathbb{Z}\{\hat{X}\}$ if

$$f(r_1,\ldots,r_t)=0$$
 for all $r_i\in R$.

R is called faithful *f*-free if *I* doesn't satisfy *f* for every nonzero *I* ⊲ *R*.

- ℤ{X̂} the free ℤ-algebra in noncommutative indeterminates in X̂ := {X, X₁, X₂, ...}.
- R satisfies $f(X_1,\ldots,X_t)\in\mathbb{Z}\{\hat{X}\}$ if

$$f(r_1,\ldots,r_t)=0$$
 for all $r_i\in R$.

- *R* is called faithful *f*-free if *I* doesn't satisfy *f* for every nonzero *I* ⊲ *R*.
- $S_k(X_1, \dots, X_k) := \sum_{\sigma \in Sym(k)} (-1)^{\sigma} X_{\sigma(1)} \cdots X_{\sigma(k)}.$ For example, $S_2(X_1, X_2) = X_1 X_2 - X_2 X_1.$

Theorem 1 (T. Kosan, T.-K. Lee, Y. Zhou)

Let $f(X) \in \mathbb{Z}{\hat{X}}$. Then there is a decomposition

$$\mathit{Q} = \mathit{Q}_1 \oplus \mathit{Q}_2$$

Theorem 1 (T. Kosan, T.-K. Lee, Y. Zhou)

Let $f(X) \in \mathbb{Z}{\hat{X}}$. Then there is a decomposition

$$\mathit{Q} = \mathit{Q}_1 \oplus \mathit{Q}_2$$

such that the following hold:

1 Q_1 is a ring satisfying f.

Theorem 1 (T. Kosan, T.-K. Lee, Y. Zhou)

Let $f(X) \in \mathbb{Z}{\hat{X}}$. Then there is a decomposition

$$\mathit{Q} = \mathit{Q}_1 \oplus \mathit{Q}_2$$

- **(**) Q_1 is a ring satisfying f.
- **2** Q_2 is a faithful f-free ring.

Let $n \ge 2$ and $f(X) = X^n h(X)$ where h(X) is a polynomial over \mathbb{Z} with $h(0) = \pm 1$. Then there is a decomposition

$$\mathit{Q} = \mathit{Q}_1 \oplus \mathit{Q}_2 \oplus \mathit{Q}_3$$

Let $n \ge 2$ and $f(X) = X^n h(X)$ where h(X) is a polynomial over \mathbb{Z} with $h(0) = \pm 1$. Then there is a decomposition

$$\mathit{Q} = \mathit{Q}_1 \oplus \mathit{Q}_2 \oplus \mathit{Q}_3$$

such that the following hold:

• Q_1 is a ring satisfying S_{2n-2} .

Let $n \ge 2$ and $f(X) = X^n h(X)$ where h(X) is a polynomial over \mathbb{Z} with $h(0) = \pm 1$. Then there is a decomposition

$$\mathit{Q} = \mathit{Q}_1 \oplus \mathit{Q}_2 \oplus \mathit{Q}_3$$

- **1** Q_1 is a ring satisfying S_{2n-2} .
- Q₂ satisfies f and Q₂ ≅ M_n(E) where E is a commutative self-injective ring such that, for some fixed integer q > 1, x^q = x for all x ∈ E.

Let $n \ge 2$ and $f(X) = X^n h(X)$ where h(X) is a polynomial over \mathbb{Z} with $h(0) = \pm 1$. Then there is a decomposition

$$\mathit{Q} = \mathit{Q}_1 \oplus \mathit{Q}_2 \oplus \mathit{Q}_3$$

such that the following hold:

- **1** Q_1 is a ring satisfying S_{2n-2} .
- Q₂ satisfies f and Q₂ ≅ M_n(E) where E is a commutative self-injective ring such that, for some fixed integer q > 1, x^q = x for all x ∈ E.

③ Q_3 is a both faithful S_{2n-2} -free and faithful f-free ring.

An additive map $\psi: R \rightarrow R$ is said to be *m*-commuting if

$$[\psi(x), x^m] = 0$$
 for all $x \in R$.

An additive map $\psi: R \rightarrow R$ is said to be *m*-commuting if

$$[\psi(x), x^m] = 0$$
 for all $x \in R$.

Definition 4

• $D(R) := \{ \delta \in \operatorname{Der}(Q) \mid I^{\delta} \subseteq I, \text{ for some } I \lhd^{\operatorname{ess.}} R \}.$

An additive map $\psi: R \rightarrow R$ is said to be *m*-commuting if

$$[\psi(x), x^m] = 0$$
 for all $x \in R$.

Definition 4

- $D(R) := \{ \delta \in \text{Der}(Q) \mid I^{\delta} \subseteq I, \text{ for some } I \lhd^{\text{ess.}} R \}.$
- A derivation word: $\Delta = \delta_1 \delta_2 \cdots \delta_t$, each $\delta_k \in D(R)$.

An additive map $\psi: R \rightarrow R$ is said to be *m*-commuting if

$$[\psi(x), x^m] = 0$$
 for all $x \in R$.

Definition 4

- $D(R) := \{ \delta \in \text{Der}(Q) \mid I^{\delta} \subseteq I, \text{ for some } I \lhd^{\text{ess.}} R \}.$
- A derivation word: $\Delta = \delta_1 \delta_2 \cdots \delta_t$, each $\delta_k \in D(R)$.
- A map by linear generalized differential polynomial:

$$X
ightarrow \sum_{i} \sum_{j} a_{ij} X^{\Delta_{j}} b_{ij}$$

where $a_{ij}, b_{ij} \in Q$ and derivation words Δ_j .

Theorem 5 (T.-K. Lee, K.-S. Liu, W.-K. Shiue, 2004)

Let R be a noncommutative prime ring. $R \ncong M_2(GF(2))$. $\psi : Q \to Q$ satisfying $[\psi(x), x^m] = 0$ for all $x \in R$, where ψ defined by a linear generalized differential polynomial. Then

$$\psi(\mathbf{x}) = \lambda \mathbf{x} + \mu(\mathbf{x})$$

for all $x \in R$, where $\lambda \in C$ and $\mu : R \to C$.

Lemma 6 (C.-W. Chen and T.-K. Lee, 2011)

Let

$$f(X) = X^{2}(X^{2} + 1)(X^{2} + X + 1).$$

Then the following are equivalent:

Lemma 6 (C.-W. Chen and T.-K. Lee, 2011)

Let

$$f(X) = X^{2}(X^{2} + 1)(X^{2} + X + 1).$$

Then the following are equivalent:

Q *R* is both faithful f-free and faithful S_2 -free.

Lemma 6 (C.-W. Chen and T.-K. Lee, 2011)

Let

$$f(X) = X^{2}(X^{2} + 1)(X^{2} + X + 1).$$

Then the following are equivalent:

- **1** *R* is both faithful f-free and faithful S_2 -free.
- Solution For any minimal prime ideal P of Q, neither Q/P is commutative, nor $Q/P \cong M_2(GF(2))$.

Let

$$f(X) = X^{2}(X^{2} + 1)(X^{2} + X + 1).$$

Then there is a decomposition

$$Q=Q_1\oplus Q_2\oplus Q_3$$

Let

$$f(X) = X^{2}(X^{2} + 1)(X^{2} + X + 1).$$

Then there is a decomposition

$$Q=Q_1\oplus Q_2\oplus Q_3$$

such tha the following hold:

1 Q_1 is a commutative ring.

Let

$$f(X) = X^{2}(X^{2} + 1)(X^{2} + X + 1).$$

Then there is a decomposition

$$Q=Q_1\oplus Q_2\oplus Q_3$$

- **1** Q_1 is a commutative ring.
- **2** $Q_2 \cong M_2(E)$ where E is a complete Boolean algebra.

Let

$$f(X) = X^{2}(X^{2} + 1)(X^{2} + X + 1).$$

Then there is a decomposition

$$Q=Q_1\oplus Q_2\oplus Q_3$$

- **1** Q_1 is a commutative ring.
- **2** $Q_2 \cong M_2(E)$ where E is a complete Boolean algebra.
- **③** Q_3 is a both faithful S_2 -free and faithful f-free ring.

Suppose that $\psi : Q \to Q$ satisfying $[\psi(x), x^m] = 0$ for all $x \in R$, where ψ defined by a linear generalized differential polynomial. Then

$$Q=Q_1\oplus Q_2\oplus Q_3$$

Suppose that $\psi : Q \to Q$ satisfying $[\psi(x), x^m] = 0$ for all $x \in R$, where ψ defined by a linear generalized differential polynomial. Then

$$\mathit{Q}=\mathit{Q}_{1}\oplus\mathit{Q}_{2}\oplus\mathit{Q}_{3}$$

such that the following hold:

1 Q_1 is a commutative ring.

Suppose that $\psi : Q \to Q$ satisfying $[\psi(x), x^m] = 0$ for all $x \in R$, where ψ defined by a linear generalized differential polynomial. Then

$$\mathit{Q}=\mathit{Q}_{1}\oplus\mathit{Q}_{2}\oplus\mathit{Q}_{3}$$

- **1** Q_1 is a commutative ring.
- **2** $Q_2 \cong M_2(E)$ where E is a complete Boolean algebra.

Suppose that $\psi : Q \to Q$ satisfying $[\psi(x), x^m] = 0$ for all $x \in R$, where ψ defined by a linear generalized differential polynomial. Then

$$Q=Q_1\oplus Q_2\oplus Q_3$$

- **1** Q_1 is a commutative ring.
- **2** $Q_2 \cong M_2(E)$ where E is a complete Boolean algebra.

•
$$\psi(x) = \lambda x + \mu(x)$$
 for all $x \in Q_3$, where $\lambda \in C$ and $\mu: Q_3 \to C$.

Notations Decomposition of Q m-commuting maps

Definitions Motivations Lemmas Main results Examples

In Case $Q_2 := M_2(GF(2))$.

In Case $Q_2 := M_2(\overline{\mathsf{GF}}(2))$.

Example 9 (T.-K. Lee, K.-S. Liu, W.-K. Shiue ,2004) $R := M_2(GF(2))$. $f : R \to R$ defined by $f\left(\left(\begin{array}{cc}\alpha & \beta\\\gamma & \delta\end{array}\right)\right) = \left(\begin{array}{cc}\alpha + \gamma & \mathbf{0}\\\mathbf{0} & \beta + \delta\end{array}\right)$ for $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in R$.

In Case $Q_2 := M_2(GF(2))$.

Example 9 (T.-K. Lee, K.-S. Liu, W.-K. Shiue ,2004) $R := M_2(GF(2))$. $f : R \to R$ defined by $f\left(\left(\begin{array}{cc}\alpha & \beta\\\gamma & \delta\end{array}\right)\right) = \left(\begin{array}{cc}\alpha + \gamma & \mathbf{0}\\\mathbf{0} & \beta + \delta\end{array}\right)$ for $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in R$. Then *f* is a GF(2)-linear map.

In Case $Q_2 := M_2(\overline{\mathsf{GF}}(2))$.

Example 9 (T.-K. Lee, K.-S. Liu, W.-K. Shiue ,2004) $R := M_2(GF(2))$. $f : R \to R$ defined by $f\left(\left(\begin{array}{cc}\alpha & \beta\\\gamma & \delta\end{array}\right)\right) = \left(\begin{array}{cc}\alpha + \gamma & \mathbf{0}\\\mathbf{0} & \beta + \delta\end{array}\right)$ for $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in R$. Then *f* is a GF(2)-linear map. **1** $[f(x), x^6] = 0$ for all $x \in R$.

In Case $Q_2 := M_2(GF(2))$.

Example 9 (TK. Lee, KS. Liu, WK. Shiue ,2004)
$R := M_2(GF(2))$. $f : R \to R$ defined by
$f\left(\left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right)\right) = \left(\begin{array}{cc} \alpha + \gamma & 0 \\ 0 & \beta + \delta \end{array}\right)$
for $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in R$. Then <i>f</i> is a GF(2)-linear map.
• $[f(x), x^6] = 0$ for all $x \in R$.