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group Kp and the Whitehead group Ki of a unital ring R according to
the following formulae:

Ko(R, ) := (Idem(R)/~,®)", Ki(R,-) := Gl Z;”(GT) R

In case R is nonunital ring, the following construction is standard:

Consider the unitization R := R x Z equipped with the multiplication ~
defined as (p, m)*(r,n) := (p - r + np + mr, mn) for every

(p, m),(r,n) € R.

Define a map f : R — Z defined by (r,z) — z for every r € R and

z € Z, which induces naturally a map Muo(R) — Moo(Z). Set
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Ko(R, ) := (Idem(R)/~,®)", Ki(R,-) := Gl (G;;ogi) R

Ko(R, ) = ker(Ko(R,") = Ko(Z")),

Ki(R, ") = ker(Kl(k,f) — Ki(Z, -))

These formulae differ a lot in cases of unital and nonunital rings.

What about the formulae, which would not depend on the existence of
a unit?
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Consider the quasi-multiplication on My, (R) defined by
MoN=M+N—-M-N forany M, N € M (R).

Instead of the set ldem__(R) of all idempotent matrices consider the set
Qldem? (R) of all quasi-idempotent matrices.

Instead of the set GL,_(R) of all invertible matrices consider the set
QGLZ, (R) of all quasi-invertible matrices.

Instead of the equivalence ~ defined by M = N if and only if there
exists P € GL__(R) such that M = P~1NP, consider another
equivalence =, defined by M ~, N if and only if there exists

Q € QGLZ (R) such that M = Q;l oNo Q.

Instead of the set
[GL.o(R),GLo(R)] =< M*N"IMN | M,N € GL(R) >
consider the set

[QGLZ,(R), QGLS(R)] =< Mgt o Nyt o Mo N | M,N € QGLS(R) > .
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Suppose that R is an arbitrary (i.e. not necessarily unital) ring and
define its "new" K-groups by

Ko(R) := (Qldem (R)/~,. ®) ",

I
Ki(R) := [QGLZO(R)gQGLgo(R)]'

In [1] we showed that in case R is unital, we have

Ko(R, ) = Ko(R) and Ki(R, ) = Ki(R).
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Define the multiplication S on R by

(p, m)3(r,n) := (p, m) + (r,n) = (p, m)<(r, n).

In order to show that the similar equivalence holds also for non-unital
R, we have to show that

ker<(Qldem;(§)/%, ®)* — (Qldem(Z)/~,, @)+> =

> (QIdemS, (R)/~y, )+

and
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< QGLE.(R) B QGLE(2) >
[QGL® (R),QGL% (R)]  [QGL3.(Z), QGLL(Z)]
~ QGLZ,(R)
— [QGL(R), QGLL(R)]
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Open question: is it true that Ko(R,-) = Ko(R, ) for nonunital ring R?
Open question: is it true that K1(R,-) = Ki(R,-) for nonunital ring R?



